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Abstract

Quantifying and Improving DNS Availability

by

Casey Deccio

The Domain Name System (DNS) is one of the components most critical to Internet

functionality. Nearly all Internet applications rely on the DNS for name-to-address

translation. The ubiquity of the DNS necessitates both the accuracy and availabil-

ity of responses. In this dissertation we present a model of DNS name resolution

from which the availability of a domain name can be quantified in the context of

its deployment. Using this model, DNS administrators will better understand the

complex processes required to resolve domain names and quantitatively improve the

robustness of their DNS configurations, from a perspective of availability.

We begin our analysis by providing relevant background on the DNS. We sum-

marize protocol details surrounding name resolution, protocol and implementation

vulnerabilities, and security extensions (DNSSEC).

Next we formalize a model for identifying DNS dependencies, based on DNS speci-

fication and server implementation. Using this model we introduce metrics to quantify

the diversity of the namespace affecting the name resolution of a domain name. We

observe that out of the set of zones influencing resolution of a domain name an average

of 92% were explicitly configured by DNS administrators. However, certain resolver

caching behaviors increase the likelihood that a domain name is influenced by third

parties.

We further our DNS dependency model to describe DNS availability, a measure

of the resolvability of a domain name. We derive a model and metrics for measuring

availability and identify weaknesses in deployments. We identify specific misconfigu-

rations that degrade the availability of a domain name and quantify their impact. In

our analysis of production DNS data we observe that 14% of domain names exhibit

lower redundancy than that which administrators have explicitly configured. We also
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observe that 6.7% of domain names required queries to more than an optimal number

of servers to obtain an answer.

Our final analysis pertains to misconfigurations affecting availability in DNSSEC

deployments. Because DNSSEC deployment is still new to administrators, many de-

ployments have suffered from server misconfiguration or maintenance neglect which

ultimately render a domain name unresolvable, even if servers are responsive. We in-

troduce metrics for improving availability, and we present methodology for increased

name resolution robustness in the presence of DNSSEC misconfiguration. In our sur-

vey of production signed zones, we observe that 31% of the validation errors detected

might be mitigated using the technique proposed in our research.

The models and metrics presented in this dissertation can assist DNS administra-

tors in better understanding their DNS deployments and avoiding name resolution

failure through proper design and maintenance of DNS.
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The Domain Name System (DNS) is one of the systems most critical to the Inter-

net. Nearly all Internet applications rely on the DNS for proper function. Although

Internet hosts communicate using the Internet Protocol (IP) and are identified by IP

addresses, the DNS abstracts IP addressing from users and clients, so they can iden-

tify Internet locations using domain names representative of human-friendly words,

titles, and abbreviations.

The use of domain names is an integral part World-wide Web. End users recognize

them as part of the Uniform Resource Locator (URL) or “Web address” correspond-

ing to a Web site. The names often intuitively reflect the name and nature of the

organization with which they are associated, such as www.ucdavis.edu, which is the

domain name for the Web server of the University of California, Davis, an institution

of higher education. URLs are the glue forming the links of the Web itself.

Other applications also rely heavily on the DNS as a lookup service. Email servers

use the DNS to look up mail exchange (MX) records for a domain, such as ucdavis.edu,

to determine the server(s) to which they should direct email destined for that do-

main. Clients use DNS service (SRV) records to discover the server(s) providing for a

particular service on the network, such as Kerberos or Lightweight Directory Access

Protocol (LDAP). Reverse lookups for host identification (i.e., mapping IP addresses

to domain names) are also accomplished using the DNS.

The layer of abstraction that the DNS provides between domain names and IP

addresses allows network versatility. Even if the IP address of a resource changes, its

domain name does not need to change; it may be modified in the DNS to point to

the IP address, or it may alias another domain name that resolves to the appropriate

IP address. A simple load balancing technique can be implemented in the DNS

by configuring a domain name to resolve to multiple IP addresses. More complex

solutions, such as Global Server Load Balancing (GSLB), attempt to identify the

location of a client and respond dynamically to a request with the address within

closest proximity.
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1.1 DNS availability and security

The ubiquity of the DNS necessitates both the accuracy and availability of re-

sponses. Name resolution failure may interrupt critical services, and tainted DNS

responses may direct users to malicious servers with the intent to steal sensitive in-

formation. The DNS must be resilient to both scenarios. Empirical studies have

shown that deployed DNS servers generally have high availability [1]. However, name

resolution in the DNS is quite complex and cannot be measured solely on server

availability. DNS name resolution includes dependencies that reach beyond the ad-

ministrative control of the name being resolved [2, 3]. Misconfiguration of a domain

name or any of its dependencies can result in reduced robustness for the name [4].

The DNS is inherently insecure, as it was not originally designed with security

in mind. Resolvers have no mechanism for verifying the validity of a response,

so an altered DNS response may go undetected. The DNS Security Extensions

(DNSSEC) [5, 6, 7] have been introduced as a security retrofit. DNSSEC responses

may be cryptographically verified using public keys and signatures embedded in the

DNS. However, the protocol and administrative complexity added by DNSSEC is non-

trivial. Administrators face the challenge of properly maintaining a DNSSEC deploy-

ment to achieve security at the risk of reducing DNS availability if misconfigurations

arise or maintenance is otherwise neglected. Early experience has demonstrated this

challenge for those designing, implementing, and deploying DNSSEC [8, 9].

1.2 Objective and outline

The objective of this dissertation is to create a model of DNS name resolution

from which the availability of a domain name can be quantified in the context of

its deployment. Using this model, DNS administrators will better understand the

complex processes required to resolve domain names and quantitatively improve the

robustness of their DNS configurations, from a perspective of availability. We break

up our analysis into several parts to achieve our objective: DNS dependencies; DNS

availability; and DNSSEC availability.
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DNS dependencies Formalizing a DNS dependency model is an essential first step

in our work [3]. Many forms of dependencies exist in the DNS, and these directly

affect reliable name resolution. Our dependency model provides an understanding and

metrics to both describe and quantify the diversity of namespace and organizations

affecting name resolution. Administrators using this model can identify the domains

and organizations influencing resolution of their domains, and quantify this influence.

DNS availability We further our DNS dependency model to describe domain name

availability [10]. Considering all dependencies required for proper resolution of a

domain name, we derive a model and metrics for measuring availability and identify

weaknesses in deployments, so-called “availability bottlenecks”. We identify specific

instances of misconfiguration that degrade the availability of a domain name. This

model provides administrators with a comprehensive picture of name resolution for

their deployed domains, so they may adjust their configurations appropriately to

improve robustness.

DNSSEC availability Our model of DNSSEC approaches availability from differ-

ent standpoint. Given the novelty of DNSSEC deployment, many deployments have

suffered from server misconfiguration or maintenance neglect which ultimately render

a domain name unresolvable, even if servers are responsive. While mostly indepen-

dent of the dependency view of availability, which focuses on server responsiveness,

this analysis is equally important when validating responses in a DNSSEC deploy-

ment. We introduce metrics for improving availability, and we present methodology

for increased name resolution robustness in the presence of DNSSEC misconfigura-

tion.

We preface our analysis with relevant DNS protocol background in Chapter 2,

discussing name resolution, vulnerabilities, and security. In Chapter 3 we present

our DNS dependency model and introduce metrics for quantifying the influence of

domain name dependencies. In Chapter 4 we formalize our DNS availability model on

the basis of name and server dependencies and measure availability with associated

metrics. Chapter 5 describes our methodology for measuring DNSSEC availability,
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based on the likelihood of validation failure due to misconfiguration. In Chapter 6,

we summarize our inferences and describe future extensions to the analysis presented

in this dissertation.
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Chapter 2

DNS Background
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Figure 2.1: An example DNS zone hierarchy.

The Domain Name System (DNS)[11, 12] is a lookup service primarily known

for mapping Internet names to addresses. It was designed as a robust and scalable

database distributed among servers spread across the globe. In this chapter we provide

an overview of the DNS, as it pertains to the research provided in this dissertation. We

discuss name resolution in the DNS, and we provide a brief summary of vulnerabilities,

attacks, and some proposed solutions. We then describe the DNS Security Extensions.

2.1 DNS fundamentals

The DNS namespace is organized hierarchically. Each domain name is comprised

of dot-separated, alpha-numeric labels, which describe the ancestry of the name it-

self, from left to right. For example, the ancestry of www.foo.com is: www.foo.com,

foo.com, com. All domain names are descendants, or subdomains, of the root domain

(represented by a single dot with no labels: “.”).

A zone is an autonomously managed piece of DNS namespace, typically adminis-

tered by a single organization. The origin of a zone is the domain name at the top

of the zone’s namespace (e.g., foo.com). The administrator of a zone may delegate

management of subdomain namespace, so the corresponding child zone may be ad-

ministered by another individual or organization. For example, the com zone may

delegate the administrative control of foo.com. An example zone hierarchy is shown

in Fig. 2.1. For each zone a set of name servers are configured and advertised as

authoritative to provide answers for non-delegated namespace in that zone. Servers

may be authoritative for multiple zones.
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$ORIGIN foo.com.

Name TTL Type Value
1 foo.com. 3600 NS ns1.foo.com.
2 foo.com. 3600 NS ns2.foo.com.
3 foo.com. 3600 NS ns.bar.com.
4 ns1.foo.com. 3600 A 192.0.2.1
5 ns2.foo.com. 3600 A 192.0.2.2
6 www.foo.com. 3600 CNAME baz.foo.com.
7 baz.foo.com. 3600 A 192.0.2.3

$ORIGIN com.

Name TTL Type Value
1 com. 3600 NS ns1.com.
2 com. 3600 NS ns2.com.
3 ns1.com. 3600 A 192.0.2.4
4 ns2.com. 3600 A 192.0.2.5
5 foo.com. 3600 NS ns1.foo.com.
6 foo.com. 3600 NS ns2.foo.com.
7 foo.com. 3600 NS ns.bar.com.
8 ns1.foo.com. 3600 A 192.0.2.1
9 ns2.foo.com. 3600 A 192.0.2.2
10 ns.bar.com. 3600 A 192.0.2.6

Table 2.1: Example zone data for several fictitious zones.

2.1.1 Zone data

Zone data consists of resource records (RRs), each of which has (among other

attributes) an owner name (e.g., www.foo.com), a time-to-live value (TTL) (e.g.,

3600), a RR type (e.g., A), and record data specific to its type. For example, the

record data for an RR of type A (address) is an Internet address (e.g., 192.0.2.3).

Some RR types, such as the CNAME (canonical name) RR, use another domain name

as record data—a target for further lookup (e.g., baz.foo.com). RRs of the same

name and type comprise a resource record set (RRset). Table 2.1 shows zone data

for fictitious zones.

One or more servers are designated as authoritative for a zone by including their

domain names as the targets of RRs comprising a the NS (name server) RRset corre-
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QUESTION
www.foo.com. A

ANSWER
www.foo.com. 3600 CNAME baz.foo.com.
baz.foo.com. 3600 A 192.0.2.3

AUTHORITY
foo.com. 3600 NS ns1.foo.com.
foo.com. 3600 NS ns2.foo.com.
foo.com. 3600 NS ns.bar.com.

ADDITIONAL
ns1.foo.com. 3600 A 192.0.2.1
ns2.foo.com. 3600 A 192.0.2.2

Figure 2.2: A DNS response for www.foo.com issued by a server authoritative for
foo.com.

sponding to the zone origin. To properly handle delegation, these records must not

only exist in the child zone, but also in its parent, as so-called delegation records.

These RRs form the link between the parent and child, and proper function requires

careful coordination between administrators of both zones. In Table 2.1 the delega-

tion and authoritative NS RRs for foo.com are found on lines lines 5–7 of the com

zone and lines 1–3 of the foo.com zone, respectively.

2.1.2 Name resolution

DNS name resolution typically involves three roles: a stub resolver, a recursive

resolver, and an authoritative server. The resolver library of an operating system is a

stub resolver. It is configured with one or more recursive resolvers to which it directs

name lookups (e.g., in /etc/resolv.conf for UNIX systems). The recursive resolver

performs lookups on behalf of requesting clients by querying authoritative servers. It

may store answers in cache until their TTLs expire. Authoritative servers respond

with answers to names corresponding to zones for which they are authoritative (e.g.,

www.foo.com for the foo.com zone). If an authoritative server receives a query for a

domain name in namespace which has been delegated, then it responds with a referral

to the servers authoritative for the child zone.
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DNS messages are comprised of several sections, each built of RRs. The ques-

tion section contains the RR describing the name being queried but does not include

the corresponding record data. Answers to the question are returned in the answer

section. Information about the servers authoritative for the zone of the name being

queried are contained in the authority section. The additional section contains sup-

plemental information that may be helpful or necessary for the resolver. The anatomy

of a response that might be issued by a server authoritative for foo.com in response

to a query for www.foo.com is shown in Fig. 2.2.

A resolver begins the name resolution process by issuing a query to one of the

servers authoritative for the root zone. This root server responds by populating the

authority section of the reply with the NS RRset for the delegated zone that is in

the ancestry of the name in question. The resolver re-issues the query with the same

question, this time directing it to one of the servers corresponding to the NS RRset

provided in the authority section of the response. The resolver iteratively continues

this process until it receives a response from an authoritative source containing either

an answer or a response indicating that the requested RRset does not exist. A portion

of the name resolution process for baz.foo.com is illustrated in Fig. 2.3, beginning with

the query issued to server authoritative for the com zone.

2.1.3 NS target distribution

The simplest configuration for establishing and advertising authority for a zone is

to use servers whose names are within the authoritative namespace of the zone. This

typically implies that the zone administrators also maintain control of the authori-

tative servers. For example, the ns1.foo.com and ns2.foo.com servers from Table 2.1

are likely under the same administrative control as foo.com. If they alone were au-

thoritative for foo.com then the administration of foo.com would be self-contained.

However, high availability of DNS name resolution requires network and geo-

graphic diversity of servers. This can be costly to acquire and maintain, especially

for non-technical businesses or institutions that don’t have the expertise or resources

to accomplish this in-house. One solution for building robustness in an organization’s
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Figure 2.3: Part of the name resolution process for baz.foo.com. The resolver issues
a query for baz.foo.com to ns1.com, which is authoritative for the com zone. The
ns1.com server returns a referral to the servers authoritative for foo.com. The resolver
re-issues the query for baz.foo.com to ns1.foo.com which returns an authoritative
answer.

DNS infrastructure is to hire an external organization with the desired diversity to

handle part or all of the DNS services. Alternatively an organization may add re-

silience at a small cost by partnering with other organizations with similar interests

to host each others’ zone data on their servers. In Table 2.1 the ns.bar.com server

is authoritative for the foo.com zone. This sharing provides both load balancing and

resilience in the case of network failure or other disaster, but it creates a dependency

on an external entity.

2.1.4 Aliasing

The CNAME RR is defined to provide aliasing of one domain name to another. For

example, www.foo.com is an alias for baz.foo.com in Table 2.1. If a resolver receives

a response indicating that the name in question is an alias to another name, it must

subsequently resolve the target of the alias, and so on until an address is returned.

This functionality is mostly provided for ease of maintenance or for seamless transition

of namespace.
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It is suggested that CNAME RRs be used conservatively, that they not co-exist with

any other RRs of the same name, and that they not be used as targets of NS RRs,

MX (mail exchange) RRs, or other CNAME RRs [13]. However, these practices are not

completely disallowed by existing implementations. The misuse of aliases results in

added complexity, overhead, and potential vulnerability to name resolution.

2.2 DNS vulnerabilities

The fundamental nature of its functionality and its inherent insecurity have made

the DNS the target of attack since its inception. Various vulnerabilities in protocol

and implementation have facilitated exploits, which lead to compromise at higher

levels [14, 15]. For example a malicious party might fabricate a response to a query

for www.foo.com to redirect Web clients from its legitimate Internet address to a

server set up to collect private information.

One of the largest targets in the DNS is the transport mechanism. The connec-

tionless User Datagram Protocol (UDP) is used most often for DNS queries for several

reasons. The size of queries and their responses is typically such that they can fit in

a single datagram. The use of UDP also avoids the overhead required to establish a

reliable Transmission Control Protocol (TCP) for a single query.

The issue that confronts the DNS is the effort required for a third-party to hijack

DNS requests and inject the malicious response in a way which will be accepted by

the requester. The connection-oriented TCP utilizes source and destination port,

as well as sequence and acknowledgment number to maintain a connection between

two parties. However, since UDP lacks the components utilized by TCP and only

distinguishes using source and destination port, the problem space becomes much

smaller for third-party injection of UDP packets. The destination port for DNS

requests (and therefore the source port for DNS responses) is well-known (port 53),

so the problem becomes guessing the unknown, 16-bit UDP port and an additional

16-bit identifier supplied in the header of the DNS packet itself.

Two prominent attacks which seek to narrow the problem space to correctly guess

the bit sequence for the response that a client is expecting, are the birthday attack [16]
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and the Kaminsky attack [17]. In the birthday attack an attacker issues a large num-

ber of requests for the same name to a recursive resolver, resulting in an equal number

of simultaneous requests open for that name on vulnerable resolver implementations.

Each open request increases the chance for a successful spoof by an attacker, whose

forged packet may match any of the open requests. Thus the number of attempts

required by the attacker to achieve success is lessened significantly, according to the

birthday paradox [18].

After a resolver receives a response from an authoritative server, the answer re-

mains in its cache until it expires, which means that future queries to the resolver

for the same name will not induce queries to the authoritative server. However, the

Kaminsky attack skirts this limitation by making requests for non-existent names.

For this approach there is no limit to queries that can be elicited by the resolver

because non-existent names are in rich supply to the attacker. The objective is not

to poison the RRs in the answer section, but rather the RRs in the authority and

additional sections of the reply. The attacker, if successful, can redirect all queries

for names in the compromised namespace to malicious servers, now recognized by the

resolver as “authoritative” for the hijacked domains. The deficiency of sufficient UDP

source-port randomization in resolver implementation reduces the problem space to

guessing the 16 bits from the DNS query identifier through repeated queries.

Successful injection leads to cache poisoning, in which an illegitimate response is

stored in a resolver’s cache until expiration, which may be set arbitrarily long by the

attacker. Until the response is expunged, the resolver will continue to use the false

information.

2.2.1 Proposed solutions

Several solutions have been proposed for securing the DNS. With the DNS Secu-

rity Extensions (DNSSEC) [5, 6, 7] answers may be cryptographically validated by

resolvers. DNSSEC will be discussed in the next section.

DNSCurve [19] is another cryptographic solution for securing the DNS. With

DNSCurve the communication channel between resolver and authoritative server is
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encrypted and authenticated using an elliptic-curve cryptographic system. The setup

and maintenance for DNSCurve incurs very little overhead, and authoritative servers

do not have any special requirements since the key is stored as the NS target of a

delegation record for the domain. Authentication of DNS data with DNSCurve relies

solely on the security of the channel between servers. Thus, a resolver may verify

that it has received a DNS answer from an authoritative server that has not been

modified in-transit. However, a third party, (e.g., a stub resolver) cannot in turn

independently validate the response offline.

Several techniques have been proposed to specifically address the problem of lack

of entropy, which facilitates third-party injection. Dagon, et al. [20] propose 0x20-bit

encoding, which mixes the case of the owner name being queried. The authoritative

server must respond with the same mixed case query name which it received from

the resolver, which increases the problem space. WSEC DNS [21] introduces entropy

by adding wildcard RRs into a zone, each of which aliases the legitimate record.

Resolvers querying the authoritative servers for a name prepend a random string

to the query name. The authoritative answer will respond with the correct answer

because the random string will match the wildcard which aliases the real record.

In addition to increasing entropy to impede would-be DNS hijackers, both of these

solutions are quite backward compatible.

CoDoNS [22] is a peer-to-peer solution which proposes distributing the DNS

namespace uniformly across a peer-to-peer network, as opposed to its current hi-

erarchical structure. The hash of each domain name maps to a “home node” from

which authoritative data can be queried. Name lookups are verified cryptographically

using a certificate system. DoX [23] is a another peer-to-peer proposal, in which re-

quests are sent to multiple, collaborating peers, and the answers returned are checked

for consistency. Discrepancies raise a warning of cache poisoning.

2.3 Security extensions

The DNS Security Extensions (DNSSEC) [5, 6, 7] add authentication to the DNS.

Public keys are included in the zone data for each zone using a DNSKEY-type RR with
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the same name as the zone. Each RRset in a zone is signed by the zone’s private

key, and each signature is included in the record data of a RRSIG-type RR, with the

same name as the RRset it covers. RRSIG RRs also contain validity dates for the

signature and the references to the DNSKEY RR needed to validate the signature. Any

RRSIG RRs covering an RRset are included in the response to a DNSSEC query, so

the resolver may perform validation using the appropriate DNSKEY.

A resolver may only authenticate an RRset with a DNSKEY RR that it has found to

be authentic. The resolver is initially seeded with a trust anchor, which corresponds

to a key that has signed the DNSKEY RRset in a zone (i.e., is self-signing). This

trust anchor provides a secure entry point (SEP) into the zone. By verifying the

self-signature of the trust anchor the resolver can authenticate other DNSKEY RRs in

the DNSKEY RRset, which may then be used for validating DNSSEC data.

Rather than requiring a resolver to maintain a DNSKEY trust anchor for every signed

zone, DNSSEC scales by establishing an authentication chain upwards through the

namespace hierarchy, so resolvers may anchor with the DNSKEY of a common ancestor

zone. The link between zones is accomplished by the introduction of DS (delegation

signer) RRs in the parent zone. A DS RR maps to a DNSKEY in the child zone of the

same name using a cryptographic digest of the DNSKEY stored as part of the record

data for the DS RR. The DS RRset for a child zone is signed by the parent zone’s

key, so a resolver may validate the secure delegation between parent and child. A

validating resolver can thus authenticate an RRset upwards along a chain of trust to

a trust anchor. An island of security is a chain of trust comprised of one or more

zones whose “top” zone is not securely linked to its parent.

A very common setup is for a zone to sign only its DNSKEY RRset with the SEP key

(a key signing key or KSK) and sign zone data with a second key (a zone signing key or

ZSK). This allows the ZSK to periodically be replaced without affecting parent zone

or trust anchor dependencies associated with the SEP. The KSK maintains minimum

exposure, having only a single RRSIG, so its replacement can be less frequent than

the ZSK. In much of this dissertation, the implementation of a ZSK/KSK split is

abstracted, except as necessary for discussion.

Figure 2.4 illustrates the chain of trust for an example DNS hierarchy. The se-
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Figure 2.4: The DNSSEC authentication chains for several fictitious zones. RRSIGs
are represented by upward arrows extending from the RRset they cover to the DNSKEY
which can validate it. SEP DNSKEYs are mapped to their corresponding trust anchor
or DS RR with an arrow. Self-signatures at each SEP DNSKEY are represented by a
self-loop.

cure.com zone is linked to its parent, while island.com is an island of security. Neither

broken.com nor insecure.com are signed.

The NSEC RR is used for authenticated denial of existence. When queried for an

RRset that does not exist, an authoritative server sends the appropriate NSEC RRs to

show where the RRset would be included if it did exist, along with their RRSIG RRs

covering the NSEC RRs. This is important for a resolver to verify that a delegation

is legitimately insecure, when there is a chain of trust to the signed parent zone.

For example, a server authoritative for the com zone in Figure 2.4 should send the

appropriate NSEC RR(s) in response to a querying resolver to prove that no DS RRs

exist for the insecure.com and island.com zones.

The use of NSEC3 for hashed authenticated denial of existence [24] was introduced

to address the side effect of being able to traverse the NSEC chain of a zone to discover

all RRsets comprising a zone. NSEC3 provides the same functionality as NSEC RRs,

except that the chain of owner names is replaced with a chain of cryptographic hashes

of owner names, which impedes the potential to have third-parties discover all the zone

data. The use of NSEC3 is also more computationally demanding on both resolver and
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authoritative server. For the purposes of this dissertation, we use NSEC to represent

authenticated denial of existence, unless noted otherwise.

2.3.1 Response validation

When a resolver is configured to validate DNS responses, there are three primary

outcomes with regard to validation of an RRset using DNSSEC [7]. Our examples

refer to Figure 2.4 and assume that a resolver is anchored with the com DNSKEY.

• Secure: An unbroken chain of trust can be established by the resolver between

the RRset and a trust anchor. Example: an RRset in secure.com properly

authenticated is deemed secure.

• Insecure: The resolver cannot verify authenticity of an RRset, but it has se-

curely proven that there is no path wherein it might be validated. Example:

if the NSEC RRs proving the non-existence of DS RRs for insecure.com and

island.com are authenticated, proving the insecure delegation to those zones,

then responses for those zones are insecure.

• Bogus : The resolver is unable to form a chain of trust between the RRset

and a trust anchor and is unable to securely show that no such chain should

exist. Example: an expired RRSIG covering an RRset in the secure.com yields

a bogus response; likewise, any RRset in broken.com is bogus because there are

no DNSKEYs, despite the existence of a DS RR.

In response to a query which a resolver deems bogus, the resolver returns a SERVFAIL

status, which indicates general name resolution failure.

2.3.2 DNSSEC maintenance

A signed zone requires more careful maintenance than an unsigned zone. Since

RRSIGs have a limited lifetime, a signed zone must be periodically re-signed to main-

tain validity. Also, periodic replacement of DNSKEYs is recommended, either because
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of compromise or prolonged exposure, which may make them the target of crypt-

analysis attack. Such replacement of a DNSKEY is called a key rollover, and current

best practices for rollovers are documented in RFC 4641 [25]. Non-SEP DNSKEYs (i.e.,

with no association with a trust anchor or a DS RR in the parent zone) can be rolled

without involving third-parties and are thus self-contained. However, the rollover of

a SEP DNSKEY requires involvement of the parent zone to handle the change in DS

RRs, and validating resolvers must be engaged when their trust anchors are rolled.

It is common and good practice for multiple servers to act as authoritative for a

zone for purposes of high availability. However, zone data must be consistent across

all authoritative servers. This is especially true for a signed zone which contains time-

sensitive RRSIGs. Servers must also be consistent in the level of DNSSEC functionality

they support. For example, if a server lacks DNSSEC support altogether, then its

responses will not contain the RRs required for DNSSEC, such as RRSIG or NSEC. If

a zone is signed with NSEC3, authoritative servers must know how to return NSEC3

RRs.
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Chapter 3

DNS Dependency Model
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While the concept of name resolution is relatively simple, the overall DNS is com-

plex and its effects far-reaching. Name resolution for a domain is often dependent on

servers well outside the control of the domain’s owner and managed by third parties.

A network of inter-organizational relationships overlays the DNS infrastructure, and

configurations that create a dependency on peer organizations are in turn affected by

the security and accuracy of namespaces linked through this network. An understand-

ing of a domain’s context in the entire system will allow architects and administrators

to better design and configure their DNS services to maximize the reliability of DNS

name resolution.

In this chapter we present a quantitative analysis of name dependencies in the

DNS. We review relevant aspects of the DNS protocol, as defined by Internet stan-

dards. We also examine several DNS server implementations and compare their be-

haviors to the specifications. Using these analyses, we derive a model to probabilis-

tically determine the namespace influencing resolution of a domain name and test it

against real domain names. Based on our model, we define several metrics to assess

the quality of name resolution for a domain name, based on the other names that

affect its resolution. The behaviors of name server implementations, some of which

are configurable, can affect these metrics. We analyze a large sample of recent DNS

data in light of the presented model. The results show the impact of name depen-

dencies in terms of the size of the namespace that influences a domain name, and in

the percentage of queries that will reach namespace not explicitly configured by DNS

administrators.

The following are the primary contributions of this chapter:

• A detailed study of DNS protocol specification and name server implementation,

with respect to DNS name dependencies.

• A formal model for analysis of DNS name dependencies, based on specification

and implementations.

• Metrics for quantifying the influence domain names have on other domain

names.



21

Our analysis shows that 92% of influential namespace of domain names is explicitly

configured by domain administrators. However, certain caching behaviors reduce that

figure, and increase the probability that resolution of a domain name is influenced by

names or organizations not explicitly configured by administrators. A diverse set of

dependencies has the potential to affect the reliability of name resolution for a domain

name. Based on our findings, we discuss best practices for design and administration

of DNS services to contain influence of domain names.

We describe previous work in this area in Section 3.1. In Section 3.2 we introduce

the concept of DNS name dependencies and examine technical details of name resolu-

tion. In Section 3.3 we formalize a graph model for analyzing DNS name dependencies

and derive methods for quantifying influence. We describe methodologies employed

for data collection, an evaluation of the graph model using real DNS data, and an

analysis of the observed quality of name resolution in Section 3.4. We summarize our

analysis in Section 3.5.

3.1 Previous work

Ramasubramanian, et al. [2] demonstrate the far-reaching effects of DNS depen-

dencies by surveying the DNS namespace and tracing the dependencies of a large

number of domain names. They identify the set of all name servers potentially in-

volved in resolution of each name, which comprise the potential attack target for that

name. Their results show that a domain name relies on 44 name servers on average

and 6% of names depend on more than 200 servers. We perform further examination

of name resolution behaviors to create a formal model of name dependencies in the

DNS and quantify the significance of such dependencies.

3.2 Name dependencies in DNS

DNS specification and the behavior of DNS server implementations result in var-

ious dependencies for domain name resolution. Prior to establishing a formal depen-

dency model we first define domain name dependency, after which we discuss DNS
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behaviors resulting in name dependencies.

Domain name u depends on domain name v if resolution of v may influence res-

olution of u. This dependence is transitive: if u depends on v and v depends on w,

then u depends on w. We define the trusted computing base (TCB) for a domain

name as the set of all domain names influencing it.

The raw size of the TCB for a domain name may be insufficient for analyzing the

domain names influencing it. In some cases policy or preference may dictate whether

or not it is acceptable for a domain name to influence another to any degree. For

example, a government zone may prohibit zones operated by foreign governments

from its TCB. However, a thorough analysis will show that not all names have equal

influence. In this research we introduce level of influence Iu(v) as a quantitative

measure of v’s influence on u. Level of influence is formally defined in Section 3.3.

Influence is categorized into two classes: active and passive. If domain name u is

actively influenced by domain name v, then with some non-zero probability resolution

of v will be required for resolution of name u. If domain name u is passively influenced

by domain name v, then although v may not be required for resolution of u, resolution

of v may affect resolution of u with some probability. The conditions for active and

passive influence are described later in this section.

Three specific components in the DNS protocol lead to such domain name depen-

dencies:

• Parent zones : Because name resolution is performed by following downward

referrals in the name hierarchy, a name is always dependent on its parent zone.

• NS targets: The NS-type RR type uses names, rather than addresses, for specify-

ing servers authoritative for a zone, so a resolver must resolve the names before

it can query the authoritative servers.

• Aliases : If a name resolves to an alias, then to obtain an address, a resolver

must subsequently resolve the alias target.

Some discussion of specific aspects of DNS behavior is required to properly create a

well-formed dependency model. The role of glue and additional records in delega-
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tion, the selection of authoritative name servers, the trust ranking of data, and TTL

dynamics are discussed in the remainder of this section. Table 3.1 is provided as

a reference for this discussion, and Table 3.2 lists the notation referenced through-

out this chapter. The behaviors of two popular DNS server implementations are

also referenced: the Berkeley Internet Name Daemon version 9.5 (BIND) [26] and

djbdns [27].

$ORIGIN soccer.com. (SoccerMania, Inc.)

Name Type Value

1 soccer.com. NS ball.soccer.com.

2 soccer.com. NS racket.tennis.com.

3 soccer.com. NS ns1.sports.net.

4 ball.soccer.com. A 192.0.2.1

5 www.soccer.com. CNAME www.tennis.com.

$ORIGIN tennis.com. (Tennis Pro, Inc.)

Name Type Value

1 tennis.com. NS ns1.tennis.com.

2 tennis.com. NS ball.soccer.com.

3 tennis.com. NS ns1.sports.net.

4 ns1.tennis.com. A 192.0.2.2

5 www.tennis.com. A 192.0.2.3

6 racket.tennis.com. A 192.0.2.4

$ORIGIN athletics.com. (Sports Central, Inc.)

Name Type Value

1 athletics.com. NS ns1.athletics.com.

2 ns1.athletics.com. A 192.0.2.8

$ORIGIN com. (VeriSign, Inc.)
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Name Type Value

1 com. NS ns1.com.

2 ns1.com. A 192.0.2.5

3 athletics.com. NS ns1.athletics.com.

4 soccer.com. NS ball.soccer.com.

5 soccer.com. NS racket.tennis.com.

6 soccer.com. NS ns1.sports.net.

7 tennis.com. NS ball.soccer.com.

8 tennis.com. NS ns1.tennis.com.

9 tennis.com. NS ns1.sports.net.

10 ball.soccer.com. A 192.0.2.1

11 ns1.tennis.com. A 192.0.2.2

12 ns1.athletics.com. A 192.0.2.8

$ORIGIN sports.net. (Sports Central, Inc.)

Name Type Value

1 sports.net. NS ns1.sports.net.

2 sports.net. NS ns1.athletics.com.

3 ns1.sports.net. A 192.0.2.6

$ORIGIN net. (VeriSign, Inc.)

Name Type Value

1 net. NS ns1.net.

2 ns1.net. A 192.0.2.7

3 sports.net. NS ns1.sports.net.

4 sports.net. NS ns1.athletics.com.

5 ns1.sports.net. A 192.0.2.6

Table 3.1: Example zone data for several fictitious zones.
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3.2.1 Glue and additional records

When a query for a name in zone z reaches name server s, which is authoritative

for Parent(z), s responds with the NS RRset corresponding to the name servers

authoritative for z as a referral. Let NSz denote the NS target names from the RRset.

Addresses of the NS targets in NSz are required for the resolver to subsequently query

the servers. If any NS targets are subdomains of z, then s must also include glue

records for those targets in the additional section of the response to “bootstrap”

the resolution process, so there isn’t a cyclic dependency between a zone and its

descendants [11]. The glue records are A RRs corresponding to the target names of

the NS RRs for z but maintained in the Parent(z) zone. The NS RRs and associated

glue records for tennis.com are found on lines 7–11 of the com zone in Table 3.1.

If server s has pertinent non-glue A RRs available locally, it may send them in the

additional section of its response to expedite the resolution process for the resolver.

This could happen if s is also authoritative for the zones to which the targets belong

or if s has an answer cached from an authoritative response [11]. However, any such

RRs included in the response for which Parent(z) is not a superdomain are considered

out-of-bailiwick (i.e., outside its jurisdiction). Thus resolver implementations should

independently obtain an authoritative answer for the out-of-bailiwick target names

before querying such servers.

The resolver is responsible for resolving any names from NSz which are out-of-

bailiwick or not included in the additional section of a response from s. Such induced

queries indicate active influence of the resolved names on z, since it is directly depen-

dent on their resolution.

3.2.2 Name server selection

RFC 1035[12] describes the process by which servers are selected by a resolver for

querying a zone z as part of the resolution process. The resolver begins with the list

of all server names NSz. The addresses known by the resolver for target names in
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NSz initially populate the set of corresponding addresses, and it initiates requests in

parallel to acquire addresses for any others. The resolver also associates historical

statistics, such as response time and success rate, to each address. The complete set

of addresses corresponding to NS target names in NSz is denoted NSAz. A resolver

will avoid using an address from NSAz twice until all addresses have been tried at

least once. After that, it prefers the server with the best performance record, thus

fine-tuning the performance for lookups of z [12].

This behavior is not consistent across implementations. The djbdns name server

selects a server from NSAz uniformly at random. However, a resolver using BIND,

which follows the performance-based selection guideline, will gravitate toward prefer-

ring a single server or set of servers in NSAz. We make the assumption that requests

for subdomains of z arrive from resolvers in diverse network and geographic locations,

such that the preference to servers in NSAz is distributed uniformly among such re-

solvers. This leads to an equal probability that any server in NSAz receives a query

for subdomains of z.

3.2.3 Trust ranking

RFC 2181[28] outlines a relative ranking of trustworthiness of data for name

servers to consider as part of operation. Among the total ranking are the follow-

ing (in decreasing order of trustworthiness):

• Data from a zone for which the server is authoritative, other than glue data

• The authoritative data included in the answer section of an authoritative reply

• The data in the authority section of an authoritative reply

• Glue from a zone for which the server is authoritative

• Data from additional section of a response

This trust ranking has effects on name dependencies with regard to both the

resolver and the authoritative server. The authoritative set of NS target names for z,
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NSz, may differ from those configured in Parent(z), denoted NS ′
z. While a resolver

must initially use the set NS ′
z provided by a server authoritative for Parent(z), once

it receives an answer for a name in z from a server authoritative for z, it will use any

target names in NSz (provided in the authority section) in preference to those in NS ′
z.

This behavior is consistent with both BIND and djbdns. Server selection therefore

depends not only on the NS targets in NSz but also on the probability that the set of

NS RRs for z has been cached by the resolver—either from the answer or authority

section of an authoritative reply. This probability is denoted PNS(z).

If authoritative server s ∈ NSAParent(z) has caching functionality enabled and has

stored the A RR for an NS target v ∈ NSz from the answer section of an authoritative

response, according to the RFC, it will trust this RR more than a glue in its own

configuration. Let Ps(v) denote the probability that s has in cache and provides such

authoritative data for v. This behavior is configurable in BIND, but it is enabled by

default.

If resolver c has cached the address for v ∈ NSz, as the result of an answer from

an authoritative source from a prior transaction, then c deems the cached data more

trustworthy than any data received in the additional section of a response from an

in-bailiwick authority. Thus, it will use the previously cached data in preference

to data—whether from glue or s’s cache—returned in the additional section by s ∈

NSAParent(z). Pc(v) denotes the probability that c has and uses such authoritative

data for v in its cache. BIND adheres strictly to this, as it will direct queries to

an address received by a more “trustworthy” source over a server returned in an

additional section—unless the authoritative data is an alias (i.e., a CNAME RR). The

djbdns name server treats the A RRs with equal precedence, but will always use an

authoritative CNAME RR over an additional A RR of the same name.

Suppose v ∈ NSz is a subdomain of Parent(z), Parent(v) 6= z, and Parent(z)

is properly configured with a glue record for v. If an authoritative answer for v has

previously been resolved and cached by either s ∈ NSAParent(z) or resolver c, then z is

affected by v and its name dependencies. This behavior describes passive influence of

v on z. The probability of passive influence, P{s,c}(v), is the combined probability of

Ps(v) and Pc(v), the likelihood that either s or c has and uses a cached authoritative
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answer for v. Since the probabilities are independent of one another, P{s,c}(v) is

calculated:

P{s,c}(v) = Ps(v) ∨ Pc(v) = 1− (1− Ps(v))(1− Pc(v))

3.2.4 TTL dynamics

The TTL value of related RRs impacts influence. For example, suppose the TTL

of the NS RRs for zone z is 3600 and the glue record for in-bailiwick NS target v ∈ NSz

has a TTL of 1800, and suppose that a resolver caches both the NS RRs and the A

RRs (from glue) at time t = 0. For lookups in z during 0 < t ≤ 1800 the resolver

will have the addresses necessary to query authoritative server v. However, when

1800 < t ≤ 3600 the NS RRs for z are still in the resolver’s cache, but now a lookup

is required to query v, so z is now required by v, even though it is in-bailiwick and

a glue exists. Not until t > 3600, when the NS RRs for z expire and it is required

to re-query the Parent(z) servers, does the resolver again receive glue records for v

in the additional section of a response. However, as explained previously, if the glue

records co-exist in cache with records from authoritative sources, the addresses from

the glue records are ignored when selecting servers to query, in which case z is still

subject to passive influence by v.

We note that after initially caching the set of NS RRs and any address records

from the from the authority and additional sections, respectively, of an authoritative

response, the BIND resolver does not replace these records with those from subse-

quent authoritative responses until they expire from the cache. The djbdns resolver,

however, does update existing records. Thus if a djbdns resolver performs repeated

lookups for domain names in z at a rate which prolongs expiration of cached NS and

address records, passive influence is minimized. Conversely, depending on rate of

lookup and TTL values for NS and address records for z and its authoritative servers,

a BIND resolver may be more prone to experience passive influence for z.

While certain configurations may affect the values for P{s,c}(v), in this article we

focus on the dependency behaviors at t = 0, and leave P{s,c}(v) as a variable.
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Term Definition
r The root name “.”

Iu(v) The measure of name v’s influence on name u
Iu(D) The aggregate influence of names in set D on

name u
Parent(d) The nearest ancestor zone of name d
Cname(d) The alias target of name d
NSz, NS ′

z The set of NS target names authoritative for zone z,
as configured in z and Parent(z), respectively

NSAz, NSA′
z The set of addresses corresponding to the names in

NSz and NS ′
z, respectively

NSAy
z The set of servers authoritative for zone z but not

for zone y
PNS(z) The probability that the resolver has the set of

NS RRs for z cached from an authoritative source
P{s,c}(v) The probability that either s or c has in cache and

uses NS target name v from an authoritative source
Gd = (Vd, Ad) Name dependency graph for name d
G′

d = (V ′
d , A

′
d) Active influence dependency graph for name d

Pq(z, v) The probability that NS target v is used to resolve z
w(u, v) The weight of edge (u, v) in Ad

Su The set of addresses corresponding to name u
U ′

d ⊆ Ud ⊆ Zd The sets of first-order, non-trivial, and all
zones in Vd, respectively

Table 3.2: Notation used in this chapter.

3.3 DNS dependency model

Name dependencies are quantified using level of influence, which is the probabil-

ity that one domain name will be utilized for resolving another. Let Iu(v) ∈ [0, 1]

denote v’s level of influence on u—i.e., the probability that domain v will be used

in the resolution process for u. Dependencies may be reciprocated (i.e., Iu(v) > 0

and Iv(u) > 0), though the level of influence in each direction may differ. In the

remainder of this section, a model is defined for analysis and quantification of DNS

name dependencies.
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Figure 3.1: The dependency graph for www.soccer.com, derived from the zone data
in Table 3.1. The solid lines represent active influence, and the dashed lines represent
passive influence.

3.3.1 Name dependency graph

To derive the values for influence of domain name d a directed, connected graph,

Gd = (Vd, Ad), is used to model name dependencies. The graph Gd contains a single

sink, r, which is the root zone. Each node in the graph v ∈ Vd represents a domain

name, and each edge, (u, v) ∈ Ad, signifies that u is directly dependent on v for

proper resolution of itself and any descendant names. Each edge, (u, v) ∈ Ad, carries

a weight, w(u, v), indicative of the probability that it will be followed for resolving

u. A name dependency graph for domain name www.soccer.com is shown in Fig. 3.1,

built from the data in Table 3.1.

Edges are placed on the graph from each domain name u, u 6= r to its parent

Parent(u) with w(u, Parent(u)) = 1; a domain name is always dependent on its

parent. If resolution of domain name u yields a CNAME RR, then an edge is placed

between u and its target name, Cname(u), with w(u, Cname(u)) = 1; the resolu-

tion of an alias is always dependent on the resolution of its target. Such edges in

Fig. 3.1 are those between www.soccer.com and its parent, soccer.com, and between

www.soccer.com and its canonical name, www.tennis.com.

Placement of edges and weights corresponding to NS target dependencies is some-

what involved and draws from the discussion in Section 3.2. The considerations are
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v subdomain Glue Example
of Parent(z) exists Parent(v) = z w(z, v) (Table 3.1 and Fig. 3.1)

no Pq(z, v) soccer.com→
ns1.sports.net

yes no Pq(z, v) soccer.com→
racket.tennis.com

yes yes no P{s,c}(v)Pq(z, v) tennis.com→
ball.soccer.com

yes yes yes 0 soccer.com→
ball.soccer.com

Table 3.3: Rules for determining whether or not and with what weight w(z, v) a edge
is placed between a zone z and an NS target v ∈ NSAz.

summarized in Table 3.3.

We first identify the proportion of queries distributed among each of the NS target

names in NSz, which we use as a base for calculating the weights of edges in Ad

stemming from NS target dependencies. Since resolvers select from addresses rather

than names of authoritative servers, the probability, Pq(z, v), of querying any NS

target v ∈ NSz for resolution of z will be some fraction of |NSAz| that reflects the

proportion of server addresses attributed to v. Let Sv represent the set of addresses to

which v ∈ NSz resolves. A näıve formula for determining query probability Pq(z, v)

is to simply calculate the fraction of total server addresses authoritative for z that

correspond to v:

Pq(z, v) =
|Sv|

|NSAz|

The zone data for foo.com in Table 3.4 shows that an NS target name that resolves

to multiple addresses, such as ns1.foo.com, has a higher probability of being queried

for names in the zone than an NS target name that resolves to only a single address,

such as ns2.foo.com.

It is possible that multiple NS target names in NSz resolve to the same address,

so a single address in Sv may also be attributed to other names in NSz. A more

complete approach to determining query probability therefore is to evenly divide the

probabilistic weight attributed to a server address among all the names that resolve
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Name Type Value Pq(z, v)

foo.com. NS ns1.foo.com. 2
3

= 0.67

foo.com. NS ns2.foo.com. 1
3

= 0.33

ns1.foo.com. A 192.0.2.9
ns1.foo.com. A 192.0.2.11
ns2.foo.com. A 192.0.2.10
bar.com. NS ns1.bar.com. 1+0.5

2
= 0.75

bar.com. NS ns2.bar.com. 0.5
2

= 0.25

ns1.bar.com. A 192.0.2.12
ns1.bar.com. A 192.0.2.13
ns2.bar.com. A 192.0.2.12

Table 3.4: Example zone data to illustrate query distribution among NS target names
of servers authoritative for a zone.

to that address:

Pq(z, v) =

∑

s∈Sv
|{u ∈ NSz|s ∈ Su}|

−1

|NSAz|

For example, in Table 3.4 both ns1.bar.com and ns2.bar.com resolve to 192.0.2.12,

so the weight of that server is split evenly among both names. The result is that

ns1.bar.com is queried with 0.75 probability for bar.com because it also resolves to

192.0.2.13, and ns2.bar.com is queried with only 0.25 probability.

When NSz 6= NS ′
z, the query probability of an edge to NS target v must also factor

in the probability, PNS(z), that the resolver has cached the authoritative set of NS

RRs for z, as well as v’s membership in NSz and NS ′
z:

Pq(z, v) = PNS(z)P (v ∈ NSz)

∑

s∈Sv
|{u∈NSz |s∈Su}|

−1

|NSAz |
+

(1− PNS(z))P (v ∈ NS ′
z)

∑

s∈Sv
|{u∈NS′

z |s∈Su}|
−1

|NSA′
z |

For simplicity we assume that NSz = NS ′
z unless specified otherwise.

If NS target v ∈ NSz is not a subdomain of Parent(z), edge (z, v) is added to

Gd with w(z, v) = Pq(z, v). Resolution of v is required for (i.e., actively influences)

resolution of z. An example is soccer.com’s dependency on ns1.sports.net.

If target name v ∈ NSz is a subdomain of z, the Parent(z) zone should include a

glue record for v. If no glue record exists for v in the Parent(z) zone, then resolution

of v is required for (i.e., actively influences) resolution of z, and an edge (z, v) is
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added to Gd with w(z, v) = Pq(z, v). Such is the case with soccer.com’s dependency

on racket.tennis.com.

If v is in-bailiwick, and a glue record for v exists, then resolution of v is not

required for resolving z because the resolver will use the address provided in glue

from the Parent(z) authoritative server. When Parent(v) = z, there is no edge

(z, v) in Gd; all servers authoritative for z have the authoritative data for v, such as

with ball.soccer.com’s relationship to soccer.com. However, when Parent(v) 6= z an

edge (z, v) is added with w(z, v) = P{s,c}(v)Pq(z, v); the name v passively influences z,

dependent on the probability that either the resolver or the authoritative server has

the address for v cached from an authoritative source. An example is tennis.com’s

dependency on ball.soccer.com.

The active influence dependency graph, G′
d, of domain name d is the subgraph of

Gd produced when P{s,c}(v) = 0, ∀v ∈ Vd and nodes with only zero-weight in-edges are

removed from the graph. The active influence dependency graph for www.soccer.com

would be created by eliminating the ball.soccer.com node in Fig. 3.1.

3.3.2 Level of influence

An analysis of the dependency paths in Gd is necessary to determine the level of

influence of the domain names v ∈ Vd on d. The dependency paths in Gd are modeled

by performing a depth-first traversal of Gd, beginning with d. This depth-first traver-

sal produces the exhaustive set of acyclic intermediate paths of name dependencies

for resolving d. The level of influence is calculated by determining the probability

that paths leading from d will reach v during resolution:

Id(v) = P (d, . . . , v)

To calculate P (d, . . . , v), the probabilities of encountering v in the dependency

paths beginning with each of u’s direct dependencies must first be recursively calcu-

lated and aggregated. The probability of encountering v in a path beginning with

edge (u, j) ∈ Ad is calculated by multiplying the probability, w(u, j), of following
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edge (u, j) by the probability of encountering v in a path beginning with j:

P (u, j, . . . , v) =























w(u, j) if j = v (direct dep)

0 if j = r (root)

w(u, j)P (j, . . . , v) otherwise

For a given domain name u ∈ Vd, resolution of u often requires following mul-

tiple branches at an intermediate node, depending on the relationship between the

dependency types. For NS target dependencies of u at most one address from NSAu is

followed (assuming no server failure). However, alias and parent dependencies exist

independently of the NS target dependencies. For example, when resolving names in

tennis.com using the zone data from Table 3.1, either ns1.tennis.com, ball.soccer.com,

or ns1.sports.net will be selected, each with equal probability. However, its resolu-

tion remains entirely dependent on its parent, com, regardless of which server in

NSAtennis.com is selected for query.

Aggregating the probability of encountering v in paths beginning with each of

u’s direct dependencies is as follows. First the probability of encountering v through

any NS-type dependencies is determined by calculating the sum of encountering it in

each of the NS-type dependency edges because the probabilities are dependent on one

another:

P (u, [NS dep], . . . , v) =
∑

j∈NSu

P (u, j, . . . , v)

This probability is then combined independently with the probability of encountering

v in paths beginning with any alias- or parent-type dependencies:

P (u, . . . , v) = 1−
(

1− P (u, Parent(u), . . . , v)
)

(

1− P (u, Cname(u), . . . , v)
)

(

1− P (u, [NS dep], . . . , v)
)

Using these expressions, we calculate the level to which sports.net influences soc-
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cer.com:

Iwww.soccer.com(sports.net) =

1− (1− P (www.soccer.com, soccer.com, . . . , sports.net))

(1− P (www.soccer.com, www.tennis.com, . . . , sports.net))

. . .

= 0.62 + 0.06P{s,c}(ball.soccer.com)

3.3.3 Graph properties

Finding the level of influence of a single name on d requires following all paths

between d and r, which is computationally complex. However, often it may suffice

to simply know the set of names influencing d, or other representative properties of

Gd. This section describes some properties from which metrics can be derived for

quantifying the TCB of d and measuring the extent to which its resolution is affected

by third parties.

Influential zones

The set of influential zones Zd ⊆ Vd is a measure of the TCB of d. Although

a single organization may maintain several zones in Zd, it is generally represen-

tative of the diversity of organizations that influence resolution of d. In Fig. 3.1

Zwww.soccer.com = {soccer.com, tennis.com, sports.net, athletics.com, com, net, .}.

Non-trivial zones

Non-trivial zones are the result of explicitly configured inter-zone dependencies.

Included in this set are the parent zones of any NS or alias targets in Ad: U ⊆ Zd.

A non-trivial zone foo.bar.com that influences d may contribute up to four zones

to Zd. However, if no in-edges resulting from alias- or NS-type dependencies exist

for any of its ancestor zones (bar.com, com, and “.”), then they exist in Zd only

because foo.bar.com is explicitly configured as a dependent zone and are thus triv-

ial. Algorithm 1 identifies non-trivial zones by iterating the set of edges Ad and
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Algorithm 1 NonTrivialZones(d)

Input: Domain name d

Output: Set of non-trivial zones in Vd

1: D ← {Parent(d)}

2: for all (u, v) ∈ Ad do

3: if (u, v) is an NS target or alias dependency then

4: D ← D
⋃

{Parent(v)}

5: end if

6: end for

7: return D

adding the parent zones of NS and alias targets. In Fig. 3.1 Uwww.soccer.com =

{soccer.com, tennis.com, sports.net, athletics.com}.

First-order dependencies

A subset of non-trivial zones U ′
d ⊆ Ud are explicitly configured by d (or Parent(d),

if d is not a zone) and comprise first-order dependencies. U ′
d also includes the non-

trivial zones in the ancestry of each explicitly configured zone. Algorithm 2 finds all

the alias (lines 5–7) and NS target (line 11) dependencies for a name d and then in-

cludes the parent zone for each target (line 15) and each non-trivial zone in its ancestry

(lines 16–21). In Fig. 3.1 U ′
www.soccer.com = {soccer.com, tennis.com, sports.net}.

Third-party influence

The computational complexity of calculating level of influence for all u ∈ Vd ren-

ders it infeasible in a large dependency graph. A less computationally demanding

metric is determining how much domain d is influenced by names outside of U ′
d, i.e.,

Id(Ud − U ′
d). We call this third-party influence (TPI). To do this, two helper algo-

rithms are utilized: the ControlledAlias algorithm (Algorithm 3) analyzes a name

to determine whether or not it aliases (directly or indirectly) another name outside of

the set of U ′
d. The ThirdPartyInfluence1 algorithm (Algorithm 4) determines the

probability that resolution of u will utilize a name outside the set of U ′
d. The latter
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is computed by aggregating the probabilities that u will utilize a name outside of U ′
d

from aliasing (lines 3–5) or from NS target dependencies in its ancestry (lines 10–19).

Algorithm 5 describes the methodology for calculating the TPI of d. The TPI

of d’s alias, if any (line 6), is combined (line 18) with the TPI of its parent zones

(line 11) and that of its collective NS target dependencies (lines 14–16).

3.4 Data collection and analysis

In this section we describe the methodology we employed for collecting data from

the DNS infrastructure, and provide analysis of the data collected. With a subset

of the DNS data we evaluate how well theoretical influence correlates with empirical

analysis. Using results from the entire data set we analyze several different areas to

assess quality of name resolution.

3.4.1 Data collection

We populated a database of name dependencies by crawling the namespace of

known domain names. A set of over 3,000,000 hostnames was extracted from URLs

indexed as part of the Open Directory Project (ODP) at DMOZ [29] dated April,

2009. These names were combined with over 100,000 names received as queries by the

recursive servers at the International Conference for High-performance Computing,

Networking, Storage and Analysis (SC08) [30]. The ODP/SC08 names were used to

seed the domain name database.

Each name was investigated by first surveying each name in its ancestry which

had not already been surveyed, beginning with the root. Surveying a domain name

consisted of issuing queries to a recursive server to receive an authoritative answer

for any matching NS, MX (mail exchange) and CNAME RRs. The relationships between

the name and any corresponding targets returned were recorded and subsequently

surveyed.

For each NS RR, we checked the consistency between parent and child zones by

using some extra probing. For zone z we found the set of servers only authoritative
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for Parent(z), NSAz
Parent(z) = NSAParent(z) − NSAz. For each server in NSAz

Parent(z)

we issued a query for z until a response was received that did not have the author-

itative answer (AA) flag set. Only if the AA flag was not set could we accurately

obtain the set of NS target names (NS ′
z) maintained by Parent(z). If NSz 6= NS ′

z an

inconsistency is detected.

The TTL field of additional address records corresponding to targets of NS RRs

in the authority section of server responses are used to identify the presence of glue

records in the parent zone. When server s returns a non-authoritative response, a

second query is issued to s after a two-second delay (both without the recursion-

desired flag set). Since TTL is measured in seconds, the two-second delay between

queries will result in a decreasing TTL for additional records sent from s’s cache. If for

an NS target there is no corresponding address record in the additional section, then

it is indicative that the parent has not been configured with a glue record. If the TTL

of the additional record differs between the two responses, then it is inferred that the

record came from an authoritative response in s’s cache. Since such a response would

take precedence over any glue record, we optimistically give the zone the benefit of

the doubt that it is configured with a glue record, if the NS target is in-bailiwick.

If the TTL value of an additional record does not vary between the two responses

from s, it could indicate one of several things:

• the parent zone is configured with a glue record for the additional record;

• s is (also) authoritative for the zone to which the additional record belongs; or

• s is authoritative for an ancestor of the NS target and has been configured with

a glue record for that NS target.

We assume optimistically in this case that if the NS target is in-bailiwick, a glue record

is present.

If no non-authoritative answers are returned from querying the servers in the set

NSAz
Parent(z), then we cannot determine inconsistencies between NS ′

z and NSz, and

their corresponding glue records. However, in practice, if NSAParent(z) ⊆ NSAz, then
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Measurement Values
ODP/SC08 hostnames 3,167,594
Total domain names collected 8,439,927
Total zones 2,996,460
NS target dependencies 6,855,379
NS targets requiring glue 3,723,203 (54%)
NS targets missing required glue 901 (0.024%)
Zones for which NSz 6= NS ′

z 587,865 (20%)

Table 3.5: A summary of results collected from surveying the DNS namespace, seeded
with ODP/SC08 hostnames.

consistency is satisfied implicitly since all servers in NSAParent(z) will send authorita-

tive records from z over corresponding records from Parent(z) [28]. For all zones in

our analysis we let PNS(z) = 0.5, so that NS target names in both NSz and NS ′
z were

considered for server selection.

Our analysis did not follow dependencies of general top-level domains (gTLDs),

such as com and edu. There were two reasons for this: all descendants of gTLDs

share the same top-level ancestry and was therefore uninteresting from the top level

up; and the names of many of the gTLD servers are in the gtld-servers.net zone, so

as we increased the probability (P{s,c}(v)) that NS target names were cached as part

of our analysis, the third-party influence of names having non-net gTLDs approached

1, which skewed the results. Our analysis did, however, follow country-code top-level

domains (e.g., us, fr). The results from the survey are summarized in Table 3.5.

3.4.2 Model validation

To validate the name dependency model presented in Section 3.3 a random sample

of over 600 of the ODP hostnames was selected, and a corresponding active depen-

dency graph, G′
d, was constructed for each name, d. For each name the level of

influence of each other domain name in the graph was calculated with PNS(z) = 0.

We deployed BIND [26] as a resolver on more than 100 PlanetLab nodes [31],

attempting to create an environment diverse enough that queries for each name by

the collective resolvers would be uniformly distributed amongst authoritative servers.
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On each PlanetLab node a query was issued to the name daemon 100 times for each

name, d. Before the initial query of each name, the server’s cache was flushed, so

the source of every name resolved during the process could be identified, rather than

relying on existing cached data from unknown sources. All DNS traffic to and from

the server was monitored. Any address queries issued by the server were induced

because of active influence on d. For every answer received for a name u during the

resolution of d, u was mapped to the name of the server from which the answer was

received. When the final response was received, containing the address corresponding

to d, the names formed a graph of dependency paths from d to r representing the

path(s) followed to resolve d, a subgraph of G′
d.

After each iteration, the addresses for any names resolved by induced queries

were flushed from the server’s cache and explicitly re-queried, before beginning the

next iteration. This is equivalent to speeding up the expiration of the cached names.

Without this action, the server would always respond with the cached name from the

previously acquired source, and the likelihood of exploring other potential paths to

the root would be diminished. After the 100 iterations of querying d, the influence of

each other name, u, on d is determined by the calculating the fraction of the iterations

in which u was included in the experimental graph.

We compared the observed dependency graph with the theoretical active depen-

dency graph for each sample ODP name. For each name analyzed we verified that

the influential names was a subset of those in Vd. The probability density function

(PDF) of the difference in influence of each is shown in Fig. 3.2. The large peak in

the graph demonstrates that 55% of the observed influence was exactly in line with

the influence predicted by the model.

3.4.3 Trusted computing base

The raw size of the TCB for hostnames collected in terms of influential zones and

non-trivial zones is shown in Fig. 3.3 as a cumulative density function (CDF), and

the statistics are shown in Table 3.6. Nearly all hostnames have a TCB smaller than

20 zones when P{s,c}(v) = 0, and the average size of the TCB was 2.26 non-trivial
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Figure 3.2: The distribution of differences between the theoretical and empirical level
of influence for each sample ODP name. Positive values indicate that the model
predicted more influence than was observed.

Metric P{s,c}(v) Avg. Max.
Influential zones 0 5.26 72
Influential zones > 0 16.53 180
Non-trivial zones 0 2.26 45
Non-trivial zones > 0 11.65 146
First-order zone ratio 0 0.92 1.0
First-order zone ratio > 0 0.63 1.0
Third-party zone influence 0 0.08 1.0
Third-party zone influence 0.5 0.38 1.0
Third-party zone influence 1.0 0.55 1.0
Non-trivial organizations 0 1.67 37
Non-trivial organizations > 0 8.41 113
Third-party organization influence 0 0.04 1.0
Third-party organization influence 0.5 0.34 1.0
Third-party organization influence 1.0 0.49 1.0

Table 3.6: TCB and influence statistics for the ODP/SC08 hostnames.
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Figure 3.3: The CDF for the size of the TCB of ODP/SC08 hostnames. Included are
the CDF for the number non-trivial and total zones in the TCB, for P{s,c}(v) = 0 and
P{s,c}(v) > 0.

zones and 5.26 total zones—both of which are reasonably small. When P{s,c}(v) > 0,

the average size of the TCB increases several times to 11.65 non-trivial and 16.53

total zones. Only about 80% have fewer than 20 zones; most of the remaining 20%

have between 30 and 90 non-trivial and total zones in their TCB. Caching and using

NS target names from authoritative sources, rather than glue, can increase the size of

the TCB of a domain by several times.

3.4.4 Controlled influence

The first-order ratio
U ′

d

Ud

, shown in Fig. 3.4, is used to determine the percentage

of non-trivial zones that are expressly configured by the administrators of d. Values

closer to 1 indicate that the administrators are largely in control of the zones com-

prising the TCB. The average first-order ratio was 0.92 for P{s,c}(v) = 0 and 0.63 for

P{s,c}(v) > 0, indicating that control of the TCB is lost as caching of NS target names

is introduced. When P{s,c}(v) > 0, third-party zones comprise more than half of the

the non-trivial zones in the TCB of roughly 40% of the hostnames surveyed.
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Figure 3.4: The CDF for the first-order ratio of the ODP/SC08 hostnames.

Fig. 3.5 shows the third-party influence of the ODP/SC08 hostnames. When

P{s,c}(v) = 0, 85% of the hostnames are not influenced at all by third parties. At

P{S,C}(v) = 0.5 only 60% of the hostnames are influenced less than 50% by third

parties. When P{S,C}(v) = 1 nearly half of the hostnames are influenced almost

certainly by third parties. Again the behavior of caching preference of NS target

names from authoritative sources at the resolver and authoritative servers greatly

affects third-party influence of domain names.

3.4.5 Alias chains

One behavior affecting the third-party influence of domain names is the practice

of chaining aliases. As an example, www.example.com is configured as an alias for

www.example.net which, in turn, is an alias for www.example.org. The practice is

common among content distribution networks for offloading the burden of address-

ing from the administrators of the original name (e.g., www.example.com). In our

survey, we found that 33,873 (1%) of the ODP/SC08 names were affected by alias

chains. Using that subset of affected names, we graphed the third-party influence
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Figure 3.5: The CDF for the third-party influence of the ODP/SC08 hostnames,
grouped by zone.

for analysis in Figure 3.6 using P{S,C}(v) = 0.5. Only 10% of the names dependent

on alias chains exhibit no third-party influence, compared to 42% of the entire set of

ODP/SC08 names. However, when we removed the effects of the alias chains in our

analysis, nearly half of the names avoided third-party influence completely, even with

P{S,C}(v) > 0.

3.4.6 Organizational dependencies

Throughout Sections 3.3 and 3.4 we have used zones as the unit of measurement

for describing properties of the DNS name dependency graph. In reality the grouping

of names or servers for analysis is arbitrary, and the methodology employed depends

on certain assumptions and the desired results. Using zones as a unit of measurement

may seem reasonable because of the assumption that security and reliability across

the servers whose names are in a common zone are consistent. A similar assumption

may hold for use of administering organizations as a unit of measurement. Analysis of

domain name influence may yield different results when zones are grouped by organi-
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Figure 3.6: The CDF for the third-party influence of ODP/SC08 hostnames affected
by alias chains, grouped by zone.

zation. For example, sports.com and athletics.net (Table 3.1) are both run by Sports

Central, Inc. Although the athletics.net zone is a third party to www.soccer.com,

when analyzed by organization it is grouped with sports.com under Sports Central,

Inc., a first-order dependency.

Every zone is configured with the email address of a responsible person (RNAME)

in its SOA (start-of-authority) RR. To further our analysis, we used the domain suffix

from the email as a method for grouping different zones into a single organization,

under the assumption that the email suffix would reflect the organization responsible

for maintenance. The results are shown in Figure 3.7. Using this organizational

grouping, we found that the number of domain names with no third-party influence

increased from 85% to over 90% when P{S,C}(v) = 0 and from 42% to 48% when

P{S,C}(v) > 0.
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3.5 Summary

In this chapter we have presented a graph model for analysis of name dependencies

in the DNS, which was based on specification and behavior of deployed DNS servers.

We defined the trusted computing base (TCB) of a domain name in terms of zones

and organizations. We also derived metrics for assessing the dependency model of a

domain name. Among these were the level of influence of influential domain names,

and third-party influence—the probability that resolution of a domain name will

utilize namespace outside the explicit configuration of domain administrators.

We observed that the TCB of domain names, when measured by influential zones

and organizations, is much smaller than previously thought. On average 92% of the

non-trivial zones in the TCB of a domain name were explicitly configured by the

domain administrators. However, the practice of resolver and authoritative server

using the address records for corresponding to NS targets from cache, rather than

from additional records in a response or from glue, can increase the size of the TCB

and the influence of third-party namespace significantly.
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To maximize the reliability of name resolution from the perspective of both re-

solver and authoritative server, administrators and designers of DNS services should

be aware of their server configurations as well as the names and organization compris-

ing the TCBs of their domain names. Administrators should review the role of name

servers in their environment to minimize the influence of third parties. The practice

of chaining domain name aliases increases the potential for third-party influence and

should be avoided, as suggested in RFC 1912 [13]. Additionally, we recommend that

the roles of authoritative server and caching server be kept distinct or that authorita-

tive servers be configured to not include information from their caches, as this creates

additional dependence. As one data point, during our survey of the production DNS

space we queried 6,033 distinct servers authoritative for a parent zone, in an attempt

to detect glue records and discrepancies in the delegation records for a child zone.

We found that 1,444 (24%) of these servers returned additional records whose TTL

decreased with subsequent requests, indicating that they had come from the cache of

the authoritative server.

A better understanding of DNS dependencies and an application of that under-

standing will put more control into the hands of DNS administrators and mitigate

the risks associated with large and diverse TCBs and high third-party influence.
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Algorithm 2 FirstOrderDeps(d)

Input: Domain name d

Output: Set of first-order dependencies in Vd

1: N ← NonTrivialZones(d)

2: /* M is the set of explicitly configured names for d */

3: M ← {d}

4: if d is not a zone then

5: if d is an alias then

6: M ←M
⋃

{Cname(d)}

7: end if

8: d← Parent(d)

9: end if

10: /* Add NS target edges for zone d to M */

11: M ← M
⋃

{u ∈ Vd|∃(d, u) ∈ Ad, an NS target dependency}

12: D ← {d}

13: /* Add non-trivial zones in M ’s ancestry to D */

14: for all u ∈M do

15: v ← Parent(u)

16: while v 6= r do

17: if v ∈ N then

18: D ← D
⋃

{v}

19: end if

20: v ← Parent(v)

21: end while

22: end for

23: return D
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Algorithm 3 ControlledAlias(u, D)

Input: Domain name u

Input: Set of first-order dependencies D

Output: False if u directly or indirectly aliases a name outside explicit dependency;

True otherwise

1: H ← {u}

2: while u is an alias do

3: if Parent(Cname(u)) /∈ D then

4: return False

5: else if Cname(u) ∈ H then /* Loop detected */

6: return True

7: end if

8: H ← H
⋃

{u}

9: u← Cname(u)

10: end while

11: return True
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Algorithm 4 ThirdPartyInfluence1(u, D)

Input: Domain name u

Input: Set of first-order dependencies D

Output: Influence on u by names outside of D

1: if u is not a zone then

2: /* u aliases a name outside of D */

3: if ControlledAlias(u, D) = False then

4: return 1.0

5: end if

6: u← Parent(u)

7: end if

8: P ← 0

9: /* Aggregate influence outside D for u’s ancestors */

10: while u 6= r do

11: Pu ← 0

12: for all v ∈ Vd|∃(u, v) ∈ Ad, an NS target dependency do

13: if Parent(v) /∈ D or ControlledAlias(v, D) = False then

14: Pu ← Pu + w(u, v)

15: end if

16: end for

17: P ← 1− (1− P )(1− Pu)

18: u← Parent(u)

19: end while

20: return P
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Algorithm 5 ThirdPartyInfluence(d)

Input: Domain name d

Output: TPI of d

1: D ← FirstOrderDeps(d)

2: PA ← 0

3: if d is not a zone then

4: /* If d is an alias, calculate the TPI of Cname(d) */

5: if d is an alias then

6: PA ← ThirdPartyInfluence1(Cname(d), D)

7: end if

8: d← Parent(d)

9: end if

10: /* Calculate the TPI of Parent(d) */

11: PP ← ThirdPartyInfluence1(Parent(d), D)

12: /* Calculate the TPI of each NS target of zone d */

13: PNS ← 0

14: for all u ∈ Vd|∃(d, u) ∈ Ad, NS target dep. do

15: PNS ← PNS + w(d, u)ThirdPartyInfluence1(u, D)

16: end for

17: /* Aggregate the TPI of all name dependencies */

18: return 1− (1− PP )(1− PA)(1− PNS)
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Chapter 4

DNS Availability Analysis
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The dependency model presented in Chapter 4 creates a foundation for under-

standing prerequisites for name resolution. The name dependency graph for a do-

main name describes the other names which are collectively responsible for its correct

resolution. Improper configuration of downstream name dependencies may result

in increased potential for name resolution failure, regardless of the robustness and

security applied to the configuration of the domain name itself.

The availability of a domain name refers to its ability to be reliably resolved using

the DNS. In this chapter we formalize the concept of domain name availability and

develop a model for measuring availability. We show how common DNS misconfig-

urations apply to this model and discuss their impact quantitatively using metrics

derived from the model. Using current DNS data we analyze the state of the DNS in

light of the availability model and discuss our observations and inferences.

The primary contributions of this chapter are:

• A model formalizing name server dependencies in the DNS.

• Metrics quantifying the availability of a domain name.

• A quantitative study of the impact of DNS misconfigurations on availability.

The metrics introduced in this chapter characterize DNS availability in terms of the

number of servers that must be queried for resolution and the level of server redun-

dancy.

In Section 4.1 we discuss previous research related to that presented in this chap-

ter. Section 4.2 extends the concept of DNS dependencies from Chapter 3 to include

server dependencies. In Section 4.3 we introduce metrics to measure the availability of

domain names, as well as discussion on common DNS misconfigurations. Section 4.4

describes our methodology for data collection and contains an analysis of live DNS

data. We summarize our findings in Section 4.5.
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4.1 Previous work

The state of the DNS is presented in several surveys of production DNS deploy-

ments [4, 32, 33]. Various misconfigurations are analyzed, including lame delegation,

diminished server redundancy, cyclic dependencies, and inconsistency of NS RRsets

between parent and child zones. In this chapter we derive a theoretical availability

model and methodology to systematically identify such misconfigurations and quan-

tify their impact on availability.

DNS availability and robustness have been analyzed in other studies [34, 1]. In

these empirical studies DNS availability was measured from a perspective of respon-

siveness of resolvers and authoritative servers, and diversity of DNS performance

from different client perspectives. In our analysis, we apply our theoretical model to

a deployment of a domain name and its dependencies to measure its availability.

4.2 DNS server dependencies

A natural extension to the DNS name dependency model presented in Chapter 3

is the addition of server dependencies. Such extension allows us to examine depen-

dencies which contribute to both the performance, security, and robustness of name

resolution, not simply namespace diversity. We refer to the fictitious zone data in Ta-

ble 4.1 for examples throughout the remainder of this chapter. We also use notation

from Table 3.2 for our analysis.

The research in Chapter 3 considers both active and passive influence. Active

influence signifies a true dependence—one name must be resolved before another.

Passive influence is the result of name servers giving preference to data received from

authoritative sources over data from glue and other sources [28]. Since this chapter

is concerned with domain name availability, we consider only active influence when

applying it to server dependencies.

Just as a domain name may be dependent on other domain names, it also depends

on name servers, identified by Internet address. We model server dependencies by

extending the active influence name dependency graph for domain name d, G′
d =
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$ORIGIN foo.net.

Name Type Value
1 foo.net. NS ns1.foo.net.
2 foo.net. NS ns2 .foo.net.
3 foo.net. NS ns1.bar.com.
4 foo.net. NS ns3.bar.com.
5 ns1.foo.net. A 192.0.2.1
6 ns2.foo.net. A 192.0.2.2

$ORIGIN net.

Name Type Value
1 net. NS ns1.net.
2 net. NS ns2.net.
3 ns1.net. A 192.0.2.3
4 ns2.net. A 192.0.2.4
5 foo.net. NS ns1.foo.net.
6 foo.net. NS ns2.foo.net.
7 foo.net. NS ns1.bar.com.
8 foo.net. NS ns3.bar.com.
9 ns1.foo.net. A 192.0.2.1

$ORIGIN bar.com.

Name Type Value
1 bar.com. NS ns1.bar.com.
2 bar.com. NS ns2.bar.com.
3 ns1.bar.com. A 192.0.2.5
4 ns2.bar.com. A 192.0.2.6
5 ns3.bar.com. A 192.0.2.7

$ORIGIN com.

Name Type Value
1 com. NS ns1.com.
2 ns1.com. A 192.0.2.8
3 bar.com. NS ns1.bar.com.
4 bar.com. NS ns2.bar.com.
5 ns1.bar.com. A 192.0.2.5
6 ns2.bar.com. A 192.0.2.6

Table 4.1: Example zone data for several fictitious zones.
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Figure 4.1: The server dependency graph for foo.net, derived from the zone data in
Table 4.1. The gray, rectangular nodes represent name servers, and the oval nodes
represent domain names.

(V ′
d , A

′
d), to include name servers and direct server dependencies. The resulting graph,

Hd = (Wd, Bd), has properties Bd = A′
d

⋃

{direct server dependencies} and Wd =

V ′
d

⋃

{name servers}. Edges in Hd are not weighted, as weights have no significance

in our study of availability.

A direct dependency between domain name u and server s, u, s ∈ Wd, exists in

two cases. If s is the address corresponding to the glue record for an in-bailiwick

name in NSz, then we add edge (z, s) to Bd. Because a glue record for s is sent to

the resolver, the resolver isn’t dependent on the server’s name, only on its address.

The edge between foo.net and 192.0.2.1 is an example of such a dependency.

If u resolves to s, then we add edge (u, s) to Bd; the resolver must resolve u before

it can query s. For example, ns3.bar.com depends on 192.0.2.7. Ultimately each zone

in Wd is directly or indirectly dependent on the servers that answer authoritatively for

each. Fig. 4.1 shows the server dependency graph derived from the data in Table 4.1.

4.3 Domain name availability

Using the server dependency graph Hd, we can begin to analyze the question of

availability of d—whether or not the name can be resolved. The availability of a

name depends on the contents of the resolver’s cache. Specifically, we analyze two

states of a resolver with regard to its cached knowledge about a particular zone, z:
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knowledgeable and ignorant.

If the resolver has cached both the names and addresses of servers authoritative

for zone z, then we say that the resolver is knowledgeable about z. Since the resolver

knows the collective addresses for the servers that are (reportedly) authoritative for

z, its Boolean availability is based on at least one of the name servers authoritative

for z responding authoritatively.

A resolver that is ignorant about zone z has no information about the names

or addresses of servers authoritative for z in its cache. In order to become knowl-

edgeable about zone z, it must learn NSz and NSAz through the standard name

resolution process. Transitioning from an ignorant to a knowledgeable state involves

learning indirect server dependencies in Hd using direct server dependencies (e.g., glue

records) as “knowledge anchors”. Caching allows a resolver to remain knowledgeable

about a zone until the pertinent RRs expire in its cache. Since caching is temporary

we consider only the more general view of availability, as seen through an ignorant

resolver.

When evaluating availability for a domain name, each of its dependencies must

be considered relative to one another. For example, a resolver only requires response

from one of the servers authoritative for zone z. However, it relies on Parent(z)

regardless of which server or NS dependency is queried. Likewise for non-zone names,

an alias dependency and any direct server dependencies are collectively mutually

exclusive [28], but the parent of the name is required independent of the others.

This concept is displayed for foo.net in Fig. 4.2, with symbolic OR nodes grouping

mutually exclusive dependencies and AND nodes grouping all required dependencies.

Because ns2.foo.net lacks a glue record, it depends on foo.net. This cyclic behavior

is discussed in Section 4.3.2.

4.3.1 Minimum servers queried and redundancy

Having a formal model of server dependencies allows us to derive metrics to mea-

sure the availability of a domain name. It may be possible, using server availability as

a basis, to recursively calculate a single normalized value which defines the availability
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Figure 4.2: A logical tree describing the availability of foo.net.

of the domain name. However, such a metric would only serve a historical purpose

and would not represent availability from the perspective of robustness. We introduce

two metrics for analyzing the server dependency graph of d, Hd: minimum number of

servers queried (MSQ) and redundancy. Both are defined with the assumption that

the resolver is ignorant.

The MSQ for a domain name refers to the minimum number of servers which

a resolver must query to resolve the name. Domain names with larger MSQs may

result in additional resolution overhead for an ignorant resolver. However, caching

minimizes overhead of subsequent lookups.

The MSQ for domain name d is returned by calling FindMSQ(d, ∅) (Algorithms 6

and 7). In a logical sense, FindMSQ recursively performs a conversion of the Boolean

availability expression for d, such as that shown in Fig. 4.2, into disjunctive normal

form (DNF). Each resulting conjunction corresponds to a complete set of servers

that may be queried to resolve d. Only the set of conjunctions having minimum size

are returned from each call. Fig. 4.3 portrays the logical structure resulting from

recursively reducing foo.net by calling FindMSQ(foo.net, ∅).
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Algorithm 6 FindMSQ(u, J)

Input: Domain name u ∈Wd

Input: Set of names visited J ⊆Wd

Output: Set of all sets of servers comprising MSQ for u

1: if u ∈ J then /* cycle */

2: return ∅

3: else if u is a name server then /* knowledge anchor */

4: return {{u}}

5: else if MSQ(u) is already known then

6: return MSQ(u)

7: end if

8: J ← J
⋃

{u} /* Add u to history */

9: MSQParent ← FindMSQ(Parent(u), J)

10: if u is a zone then

11: /* Direct server and NS dependencies of u */

12: D ← {∀v ∈ NSA′
u

⋃

NS ′
u|∃(u, v) ∈ Bd}

13: else

14: /* Direct server and alias dependencies of u */

15: D ← {∀v ∈ Su

⋃

{Cname(u)} |∃(u, v) ∈ Bd}

16: end if

17: /* Continued in Algorithm 7. . . */

Figure 4.3: A logical tree describing the MSQ of foo.net.
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Algorithm 7 FindMSQ(u, J) (continued from Algorithm 6)

18: /* Find minimum MSQ among mutually exclusive dependencies */

19: MSQOther ← ∅

20: msq ←∞

21: for all v ∈ D do

22: MSQ′
Other ← FindMSQ(v, J)

23: msq′ ← mins∈MSQ′

Other
|s|

24: if msq′ < msq then

25: MSQOther ←MSQ′
Other

26: msq ← msq′

27: else if msq = msq′ then

28: MSQOther ←MSQOther

⋃

MSQ′
Other

29: end if

30: end for

31: /* Find smallest union of MSQParent, MSQOther */

32: msq ←∞

33: MSQ← ∅

34: for all MSQ′
P ∈MSQParent, MSQ′

O ∈MSQOther do

35: MSQ′ ←MSQ′
P

⋃

MSQ′
O

36: if |MSQ′| < msq then

37: MSQ← {MSQ′}

38: msq ← |MSQ′|

39: else if |MSQ′| = msq then

40: MSQ←MSQ
⋃

{MSQ′}

41: end if

42: end for

43: MSQ(u)←MSQ /* Store the value for future use */

44: return MSQ
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The MSQ is simply the size of any one of the sets returned by FindMSQ. The sets

of servers comprising the MSQ returned for foo.net are: {192.0.2.1, 192.0.2.3} and

{192.0.2.1, 192.0.2.4}. Root servers are excluded from our example for simplicity, so

we increase the MSQ by one to account for it. Thus, the minimum number of servers

needed to resolve foo.net is 3.

The MSQ for a domain name is optimal if it is less than or equal to the number of

zones in its ancestry, including the root zone. This accounts for a resolver querying a

single server authoritative for each ancestor zone. Any queries required beyond this

number constitutes a sub-optimal MSQ. For example, the MSQ of foo.net is optimal.

Zones that completely outsource their DNS services to out-of-bailiwick servers (e.g.,

foo.net → ns1.bar.com) are among those that are prone to have suboptimal MSQs

because at least one additional lookup is required for the server names.

The redundancy is the size of the smallest set of redundant servers at any point in

a required resolution path and might be considered the “availability bottleneck” of a

domain name. If all servers comprising the redundancy of a domain name were to fail,

then the name would be rendered unavailable. The methodology for determining the

redundancy of a domain name is very similar to that for determining the MSQ. The

difference is that rather than reducing to DNF, the logical expression is reduced to

conjunctive normal form (CNF), returning a set of disjunctions. We have not included

the actual redundancy algorithm in this work. The sets of servers comprising the

redundancy of foo.net are: {192.0.2.1, 192.0.2.8} and {192.0.2.3, 192.0.2.4}. That is

say that if both 192.0.2.1 and 192.0.2.8 are unavailable or both 192.0.2.3 and 192.0.2.4

are unavailable, then foo.net is rendered unavailable.

As a point of reference, we compare the redundancy of domain name d to its

configured redundancy, which is the size of the set of server names, NSz, authoritative

for its nearest ancestor zone, z. If the redundancy for d is less than |NSz|, then the

true redundancy is less than the redundancy configured by the administrator. We

categorize such a case as false redundancy. False redundancy may exist when multiple

names resolve to the same address or not all NS RRs for z are included in Parent(z),

so |NSA′
z| < |NSz|. It could also result from a narrower bottleneck in downstream

dependencies. The redundancy for foo.net is a false redundancy, as there are four
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server names in the set of NS RRs for foo.net, but the size of the redundancy set is 2.

4.3.2 DNS misconfigurations

DNS misconfigurations may lessen availability of a domain name. We discuss in

this section several DNS misconfigurations and their relationship to domain name

availability.

Lame delegation occurs when a server is included in the NS RRs as authoritative

for a zone, but does not actually contain authoritative data for the zone. It can be

caused by either incorrect NS RRs for a zone or a misconfiguration on the lame server

itself. Lame delegation impacts the availability of a domain name. If a server s is

lame for zone z, then edge (z, s) is effectually excluded from Hd, which potentially

increases MSQ and decreases redundancy of d. Our survey of the DNS showed 2.5% of

authoritative servers as non-responsive and another 1.2% that either issued an error

response or returned non-authoritative data.

Cyclic dependencies, discussed in [4], are identified by a cycle in the server depen-

dency graph, Hd, and affects the availability of domain name d for resolvers which

are ignorant of d. A cyclic name dependency can be caused by a missing glue record,

such as that for ns2.foo.net, or it may be two names that otherwise require each other

for proper resolution. Fig. 4.2 demonstrates the effect of cyclic dependencies when

measuring the availability of a domain name. A name which is a dependency of itself

is effectively “unavailable”. For example, foo.net (the node below ns2.foo.net) can-

not be relied on for resolving foo.net (the root node) because they represent the same

name. This in turn makes ns2.foo.net unavailable. Cyclic dependencies potentially

decrease the redundancy of a domain name for an ignorant resolver. We observed

that 0.095% of the zones we examined exhibited self-dependence, 76% of which was

caused by missing glue records. Glue records required for delegation records were

missing 0.024% of the time.

Since delegation records for z are maintained in Parent(z) independently from the

authoritative NS RRs maintained in z, it is not uncommon for the two sets to be out

of sync (i.e., NSz 6= NS ′
z). Our survey showed that child/parent NS RR inconsistency
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exists in 20% of zones. Assuming that the set of authoritative server names for a zone

is exactly correct, then extra delegation records lead to lame delegation, and miss-

ing delegation records potentially reduce redundancy and increase MSQ. Our survey

showed that 6% of authoritative server names do not exist as delegation records, and

5% of delegation records do not exist in the authoritative zone data.

4.4 Data collection and availability analysis

We built a graph of name and server dependencies for each ODP/SC08 hostname

(from Chapter 3) by recursively following all dependencies of each name. The results

of our analysis are contained in this section.

In our survey we were unable to detect certain DNS configurations which affect

availability. Requests sent to an anycast address are routed to one of multiple DNS

servers, depending on source address and availability. Load balancers bear a single

unicast address but distribute requests to multiple back-end servers. A multi-homed

server responds to requests on multiple addresses. In our analysis we treat each IP

address as a single server.

We assessed the availability of each of the ODP/SC08 names from our survey.

Fig. 4.4 plots the MSQ and redundancy for the ODP/SC08 names as a cumulative

distribution function (CDF). The average MSQ was 3.48, and 62% of names had an

MSQ of 3 or less. However, the average MSQ decreased to 3.38 when the set of

authoritative server names was used instead of the delegation records, and 69% of

names had an MSQ of 3 or less. The names had an average redundancy of 2.34, and

79% of the names had a redundancy of less than 3. Only 3% of the names had a

redundancy greater than 3. When the set of authoritative server names was used

instead of the delegation records, the redundancy of 5% of the names increased to 3

or more. The differences in MSQ and redundancy when using the set of authoritative

server names show the necessity of proper maintenance of delegation records in the

parent zone.

We observed that 6.7% of ODP/SC08 names had sub-optimal MSQ values, and

14% exhibited false redundancy. We attribute the fraction of sub-optimal MSQ val-
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Figure 4.4: The availability of production DNS names, in terms of MSQ and
redundancy.

ues to zones that outsource their DNS service to servers whose names are in out-

of-bailiwick zones. The large percentage of names experiencing false redundancy

demonstrates the impact that downstream dependencies can have on domain name

availability.

4.5 Summary

In this chapter, we have extended our name dependency model from Chapter 3

to formalize a model for server dependencies in the DNS. Using that model we have

derived metrics for quantifying the availability of domain names. We observed that

14% of domain names experience lower redundancy than that with which they’ve

been configured, and the minimum number of servers required to query (MSQ) for

resolution was sub-optimal in 6.7% of domain names.

High availability and robustness were built into the DNS protocol, but proper

design and configuration by DNS administrators are required for these behaviors to be

displayed. Common misconfigurations can negatively affect domain name availability
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and consequently cause potential disruption of critical services. DNS administrators

should be aware of the workings of the DNS and the dependencies of administered

domain names. Such knowledge will allow them to handle these important issues,

and in turn, enhance the functionality and accuracy of DNS services.
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Chapter 5

DNSSEC Availability Analysis
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The availability of a domain name as analyzed in Chapter 4 can be affected by

improper configuration of any zones or servers on which it is dependent. DNSSEC

adds new components that further impact the availability of a domain name.

As early adopters have begun signing zones and enabling validation, experience

has shown that DNSSEC requires significantly more administration than standard

DNS. The complexities of DNSSEC are fertile ground for misconfigurations which

inhibit proper name resolution, and the availability of dependent names is much more

likely to be affected by misconfiguration. For example, in June, 2010, signatures

accompanying DNS records in the arpa zone expired1. This zone is the authority

for all reverse name resolution—mapping Internet addresses to domain names. When

the signatures expired, validating resolvers were unable to successfully perform reverse

lookups until the zone was re-signed.

In this chapter we present a model to quantify the impact of DNSSEC-related mis-

configurations, and we introduce several metrics to quantify the complexity of a DNS

architecture, with respect to its hierarchical ancestry and administrative diversity.

We propose a system for soft anchoring to minimize the impact of misconfigurations

on name resolution. Using production DNSSEC data we show the pervasiveness of

DNSSEC-related misconfigurations and show how our soft anchoring approach helps

maintain availability of otherwise unreachable zones. We list the following as the

major contributions of this chapter:

• An analysis of misconfigurations related to DNSSEC deployment and a survey

of their pervasiveness in production DNS.

• A model to quantify the potential for resolution failure of zones due to DNSSEC

misconfiguration.

• Metrics to measure complexity of a DNS setup which impact the failure potential

of zones for which DNSSEC is deployed.

• A mechanism for soft anchoring to increase robustness in spite of DNSSEC

misconfiguration.

1http://www.dnssec-deployment.org/pipermail/dnssec-deployment/2010-June/004009.html
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In Section 5.1 we present our model for analyzing DNSSEC availability and in-

troduce metrics for quantifying the complexity of DNS configurations which increase

the potential for failure. Section 5.2 describes our proposal for increasing robustness

through soft anchoring. Section 5.3 discusses our analysis of production DNS data

in light of our model. Related work is summarized in Section 5.4, and we summarize

our findings in Section 5.5.

5.1 Modeling DNSSEC availability

While DNSSEC has the obvious advantage of allowing a resolver to cryptograph-

ically verify the answer given for a domain name query, it adds complexity to the

requirements for name resolution, and increases the potential for failure. Any server

or zone misconfiguration in the line of trust between anchor and query name widens

the target of error. In this section we present a model for availability of domain names

in a DNSSEC deployment. Our model focuses solely on the issue of availability due

to improper DNSSEC configuration, and does not consider incorrect responses which

are the result of stale zone data (except as it relates to DNSSEC), cache poisoning,

or other malicious injection.

5.1.1 Failure potential

Chapter 2 lists the possible results of a DNSSEC validation from the perspective

of a resolver as secure, insecure, and bogus. When a resolver ultimately determines

that the answer that it has resolved is bogus, it issues a failure message to the re-

quester. However, the mechanism for determining that the answer is bogus is specific

to implementation. Some resolver implementations, after encountering the bogus

from a single authoritative server, continue trying each of the remaining authorita-

tive servers until they get a valid response—or exhaust all possible avenues. Such is

the case with Internet Systems Consortium’s (ISC) Berkeley Internet Name Daemon

(BIND) version 9.6 [26].

However, even when the validating resolver is so diligent, failure due to miscon-
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figuration is still possible in the following circumstances: 1) The zone data is invalid

on all of the zone’s responsive authoritative servers; or 2) the resolver is behind one

or more proxy resolvers to which it is configured to forward its requests. In the

former case the resolver will exhaust all possibilities for success after querying each

of the available servers. In the latter, the validating resolver is at the whim of the

proxy resolvers, regardless of whether or not the upstream resolvers are configured

for validation or have practiced validation diligence to obtain appropriate DNSSEC

responses. For these reasons, we consider the more general case in which an invalid

response received from any misconfigured server results in a validation failure.

We group the causes for validation failures into three classes:

• Zone: Missing, expired, or otherwise invalid RRSIGs covering zone data; or

missing DNSKEY RRs required to verify RRSIGs.

• Delegation: Bogus delegations caused by lack of appropriate DNSKEYs in a child

zone corresponding to DS RRs in the parent zone; or insufficient NSEC RRs to

prove an insecure delegation to a resolver.

• Anchor : Stale trust anchors in a resolver, which no longer match appropriate

DNSKEYs in the corresponding zone.

We quantify failure potential by determining the probability that the resolver queries

a misconfigured server or misconfigured zone during resolution of a domain name,

which would consequently result in a validation failure.

We establish some notation for our analysis. Let z(i) denote the zone i generations

above zone z, such that z(0) = z, z(1) = Parent(z), and z(m) is the root zone. Let

NSz and NSAz denote the sets of names and addresses of servers authoritative for

zone z, respectively. Figure 5.1 illustrates a DNS setup with a stub resolver configured

with n recursive resolvers r1, r2, . . . , rn, resolving names in zone z.

We identify the set of servers authoritative for z which are both resolvable and

responsive, denoted NSA′
z ⊆ NSAz. If server u ∈ NSz is a subdomain of z’s parent

zone and z’s parent zone provides an address (glue record) for u, then a resolver can

use the glue address [12, 28]. This address is included in NSA′
z, provided the server



70

Figure 5.1: A typical DNS setup in which a client (stub resolver) is configured to use
n recursive resolvers which resolve a name in zone z with an ancestry of size m.

is responsive. Otherwise, a resolver must resolve and validate u, the result of which,

if successful, is included in NSA′
z. Non-responsive servers are excluded from NSA′

z

because although a resolver may query the server, upon timeout the resolver will

reissue the query to another authoritative server [12], in contrast to the scenario in

which a server responds with incomplete or bogus data.

Let B(z) ⊆ NSA′
z denote the set of servers authoritative for zone z which serve

bogus or incomplete data for zone z, resulting in a zone-class misconfiguration. We

assume that any authoritative server has an equal chance of being selected for query

by the resolver. Under such circumstances the probability, P ′
f(z), that the resolver

queries a server whose response results in a bogus validation is:

P ′
f(z) =







1.0 if NSA′
z = ∅

|B(z)|
|NSA′

z |
otherwise

(5.1)

Because validation must follow the authentication chain from the zone in question

to a trusted anchor, we include the servers authoritative for zones in z’s ancestry,

z(0) through z(m), as illustrated in Figure 5.1. Let z(a), a ∈ [0, m] denote the zone

for which the resolver is configured with a trust anchor. While it is possible that

a resolver is configured with multiple trust anchors within the same hierarchy, we

assume for the purposes of this chapter that for a given zone hierarchy at most one
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Figure 5.2: An illustration of the delegation model for zone z with ancestry z(0) to
z(m) and chain of trust extending from z(j) to z(a), anchored at zone z(a).

trust anchor exists.

We also consider the case of insecure delegation. Let z(j), j ∈ (0, a] denote a zone

such that 1) the delegations between z(a) and z(j) are linked with a chain of trust

and 2) the delegation from zone z(j) to zone z(j−1) is insecure. Figure 5.2 illustrates

the delegation model with this notation.

When extending the failure potential model for zone z to include its entire an-

cestry we must now consider zone-class DNSSEC problems in zones z(i), i ∈ [j, a],

delegation-class problems in zone z(i) affecting delegation to z(i − 1), i ∈ [j, a], and

anchor -class problems in zone z(a). We denote the sets of servers serving such bogus

data for zone z(i) as Bz(z(i)), Bd(z(i)), and Ba(z(i)), respectively. We combine the

sets to form the comprehensive set referenced in Equation 5.1:

B(z(i)) = Bz(z(i)) ∪ Bd(z(i)) ∪ Ba(z(i)) (5.2)

Note that for other zones, outside the chain of trust, non-anchor-class DNSSEC errors

are innocuous, regardless of whether or not z(i) is signed, such that Bz(z(i)) = ∅ and

Bd(z(i)) = ∅. We now combine the probabilities of querying a misconfigured server

in the preceding zones as independent events to define the potential for zone z to fail

validation by a resolver:

P r
f (z) = 1−

m
∏

i=0

(

1− P ′
f(z(i))

)

(5.3)
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If responses across authoritative servers are consistent for all zones z(i), i ∈ [j, a]

then P r
f (z) will always be 0 or 1—all resolvers from the same vantage point will

either fail together or succeed together. However, when authoritative servers exhibit

inconsistent DNSSEC results, the failure potential is a fraction. In such cases, the

probability of bogus response is the same for any resolvers having the same vantage

point, but failure potential is reduced exponentially with each attempt by a distinct

recursive resolver since they validate independently. Common behavior for a stub

resolver receiving a SERVFAIL message is failover to its next configured recursive

resolver. We therefore model the failure potential for a zone as experienced by a stub

resolver configured with n recursive resolvers (as in Figure 5.1) as follows:

P s
f (z) =

(

1−
m
∏

i=0

(

1− P ′
f(z(i))

)

)n

(5.4)

With this availability model we have only considered a common DNS configuration

exemplified in Figure 5.1. Our figures for failure potential are calculated with the

assumption of a single validating resolver for a stub resolver (i.e., n = 1). The model

may be modified to suit alternate configurations. Also, we do not consider the effects

of TTL values and caching on misconfiguration, which may affect the duration for

which a problem persists.

5.1.2 Quantifying complexity

The disregard for DNSSEC maintenance can result in increased failure potential.

One important necessity is careful coordination both hierarchically (i.e., between

parent and child zones) or laterally, between organizations hosting each others’ data.

The hierarchical relationship is the most crucial, since the chain of trust extends

vertically, and a break in the chain results in general failure to the namespace below.

However, this coordination is less demanding because it generally involves only two

entities. Problems caused by lateral coordination may be less severe, in particular

if a resolver exercises validation diligence. However, the complexities still result in

increased failure potential.

We present two metrics to quantify the complexity of a DNS zone. The metrics
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themselves are calculated independent of DNSSEC deployment, but higher metric

values may increase the failure potential for signed zones because they indicate more

areas where problems may occur. The first metric is the hierarchical reduction poten-

tial (HRP), which quantifies how much the ancestry of a zone might be reasonably

consolidated to reduce hierarchical complexity. The second is administrative complex-

ity which describes the diversity of a zone, with respect to organizations administering

its authoritative servers.

The depth of a zone is measured by its distance from the root zone. For exam-

ple, zone z has ancestry z(0), z(1), . . . , z(m) comprised of m + 1 zones and has a

depth of m. Each ancestral zone z(i) contributes to the failure potential for zone

z, as it is an additional requirement of DNSSEC correctness that must be consis-

tent. While delegation is necessary in many cases, there are some cases in which

collapsing a delegated zone is both reasonable and possible. For example, if exam-

ple.com and sub.example.com are two zones administered by the same organization,

the zone data for sub.example.com might trivially be migrated to the example.com

zone and the delegation to sub.example.com removed. Records previously a part

of the sub.example.com zone would be added to the example.com: e.g., www in

sub.example.com becomes www.sub in example.com. This consolidation reduces the

number of zones ancestral to sub.example.com by 0.25 from 4 to 3.

We express the HRP of zone z, having m + 1 ancestral zones, as the fraction of

layers that could be reduced if the number of zones is consolidated to m′ + 1:

HRPz =
m−m′

m + 1
(5.5)

A greater HRP value indicates that failure potential might be reduced by minimizing

hierarchical complexity.

Administrative complexity is the side effect of having multiple organizations host

authoritative data for a zone. While third-party hosting is often advantageous to

gain geographic and network diversity for high availability, the coordination increases

the potential for failure. Unilateral changes to server address, firewalls, or software

version or configuration could ultimately result in a lapse in synchronization between

zone data hosted by servers from two organizations. The number distinct organi-
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zations serving authoritative data for a zone provides one means of measuring this

diversity. However, to characterize the distribution we propose a metric which de-

termines the probability that given n random selections with replacement from the

servers authoritative for z, the servers selected are not administered by the same

organization o ∈ Oz:

ACn(z) = 1−
∑

o∈Oz

(

|NSAo
z|

|NSAz|

)n

(5.6)

where Oz denotes the set of organizations administering servers which are hosting zone

data for z and NSAo
z ⊆ NSAz denotes the subset of servers in NSAz administered by

organization o ∈ Oz.

For example, assuming the servers ns.example.com and ns.example.net are oper-

ated by two separate organizations and are the only authoritative servers for exam-

ple.com, the administrative complexity of example.com with n = 2 is:

AC2(example.com) = 1−

(

(

1

2

)2

+
(

1

2

)2
)

= 0.5

Accurate calculation of the HRP and administrative complexity for a zone requires

some knowledge of the administrative nature of the zone not necessarily available by

observation. We have made some inferences based on observation to estimate these

metrics. We use the email suffix of the responsible name (RNAME) field from the start of

authority (SOA) RR of a zone as a value for comparison. For HRP we assume that if the

RNAME email suffix between parent and child zone matches, they are administered by

the same organization, and that reducing the size of the zone’s ancestry by 1 might be

possible. For example, the it.ohio-state.edu and ohio-state.edu zones share an RNAME

value of hostmaster@osu.edu and might from an outside perspective be considered

for collapse into a single zone. We notably excluded the possibility of collapsing

delegations from the root zone or TLDs, even if they shared common RNAME fields,

which is the case with com and the root zone. Such consolidation would simply be

unrealistic and infeasible.

For administrative complexity, we also used the RNAME email suffix to identify an

organization responsible for administering an authoritative server. For each server

authoritative for z, we identified the zone to which its server name u ∈ NSz belongs.
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For example, servers from the uoregon.edu and lsu.edu zones are authoritative for

lsu.edu. Each zone has a distinct RNAME suffix, so we classify these as two organiza-

tions. There may be some false positives (a single organization managing multiple

zones with distinct RNAME values), but overall the comparison should be representa-

tive.

5.2 Soft anchoring

The metrics presented in Section 5.1.2 quantified factors that may increase the

failure potential of a zone and its servers and implicitly suggested means for miti-

gation, e.g., by collapsing zones with common administration to reduce the size of a

zone’s ancestry. We now present an alternative method to mitigate failure potential

for zones by shifting the focus from the authoritative servers to validating resolvers.

We propose the use of additional trust anchors by the resolver for each zone in an

authentication chain to decrease the reliance of each ancestor “link” in the chain. In

this section we provide an explanation of the reasoning behind our proposal, as well

as its implementation.

5.2.1 Extending the DNSSEC trust model

The authenticity of DNSKEYs in zones z(j) through z(a − 1) is established by fol-

lowing the authentication chain to the trust anchor z(a). The DNSKEY RRset for each

zone is cached by validating resolvers until its TTL expires or its covering RRSIG

expires—whichever occurs first [7]. Upon expiration it must be re-authenticated to

the trust anchor at zone z(a). However, DNSKEY values often remain static well be-

yond their expiration. Current recommended rollover practices suggest rollovers be

performed on granularity of months or years, depending on algorithm, key size, and

key function (KSK or ZSK) [25]. We therefore propose that validating resolvers install

additional trust anchors at descendant zones, as DNSKEYs are authenticated through

the established chain of trust.

If the resolver is configured with a trust anchor at each zone z(i), i ∈ [j, a], then
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validation of each is self-contained. By installing additional anchors from authenti-

cated DNSKEYs, the burden carried by ancestor zones to properly validate is eased,

and each signed zone must only ensure the correctness of its own data. The result is

that validation of zone z is unaffected by: zone- and anchor-class misconfigurations

from zones z(i), i ∈ (j, a]; and delegation-class misconfigurations affecting delegations

from zone z(i) to z(i− 1), for i ∈ (j, a].

5.2.2 Soft anchor management

To implement our trust anchor extension, we introduce the notion of soft anchors,

in addition to traditional trust anchors, which we refer to as hard anchors. Hard and

soft anchors are both used by resolvers for validation and are formally defined by the

following rules of transitivity:

• A trust anchor installed on a resolver by a DNS administrator and verified

out-of-band is a hard anchor.

• A trust anchor authenticated within the same DNSKEY RRset as a hard anchor

is also a hard anchor.

• A trust anchor authenticated by establishing an authentication chain from a

hard or soft anchor to a SEP in a descendant zone is a soft anchor.

• A trust anchor authenticated within the same DNSKEY RRset as a soft anchor

is also a soft anchor.

Resolvers must maintain the source of each trust anchor in its repository as either a

hard or soft anchor.

Hard anchors are maintained following procedures detailed in RFC 5011 [35].

Resolvers periodically poll the anchored zone for updates. A resolver adds a new

trust anchor when a new DNSKEY RR with the SEP bit set is detected in the DNSKEY

RRset of the anchored zone, after it has existed for longer than a specified hold-down

time. Resolvers learn of DNSKEY revocation when they see a self-signed DNSKEY with

the revoke bit set.
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Our proposed procedures for managing soft anchors extend RFC 5011 for an-

chor addition and removal. A resolver periodically polls to re-authenticate the chain

leading to the soft anchor. Soft anchors are added by a resolver when:

• the resolver detects a self-signed DNSKEY RR with the SEP bit set and which

corresponds to an authenticated DS RR in the parent zone; or

• the resolver detects a new DNSKEY with the SEP bit set within a DNSKEY RRset

already authenticated by an existing a soft anchor, and the DNSKEY persists for

a hold-down period.

A hold-down period is only required in the second case because the existence of a DS

RR in the first case suggests a legitimate addition by the zone administrator. The

hold-down period specified by RFC 5011 is the greater of 30 days or the TTL of

the DNSKEY RRset. However, soft-anchored zones don’t have reason to implement

RFC 5011 because they are linked via a chain of trust to their parent zone and don’t

anticipate being anchored by resolvers. For such zones with DNSKEY TTL less than 30

days (quite likely), a new key might be introduced and used to sign the DNSKEY RRset

exclusively as a SEP before a hold-down period is complete. The resolver would be

unable to add it as a soft anchor in that case (unless its DS RR was also detected).

This would undermine the continuity needed to protect against a bad KSK rollover,

in which the new SEP DNSKEY is rolled successfully, but the corresponding DS RRs are

not. Without a new soft anchor, a resolver cannot legitimately validate the DNSKEY

RRset until the remainder of the 30 days has passed. To remedy this we suggest

a hold-down period matching the lesser of the DS TTL and DNSKEY TTL, which is

sufficient for a KSK rollover following procedures documented in RFC 4641 [25].

Soft anchors are removed from a resolver’s repository when:

• a DNSKEY RR is revoked, following RFC 5011;

• the DS RR previously in existence for a soft anchor has been removed; or

• the chain of trust from hard to soft anchor has been securely unlinked, such

that there is no longer a path to authenticate the soft anchor.
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The first two items indicate explicit revocation either by RFC 5011 standards or

by removing the link from its parent. The third item recognizes the intent of the

administrator of a zone or its ancestor to prevent a path for validation; soft anchors

were not necessarily intended by the zone administrators to be maintained by resolvers

as trust anchors.

Validation is first attempted with the soft anchor in the closest ancestor zone.

When validation with soft anchors at each ancestor zone have failed, then the hard

anchor is used for validation.

Although the soft anchoring approach will decrease dependence on the DNSSEC

correctness of ancestor zones in the chain of trust, it is only a mitigation technique.

Most notably if a problem exists at zone z(i), i ∈ [0, j], then the availability of zone

z will still be affected because there is no further soft anchoring below z(j). Also,

a valid chain of trust must extend to z(j) to bootstrap soft anchoring. A resolver

attempting to validate z for the first time will experience failure if the chain of trust

is broken.

5.3 Data collection and analysis

We performed a study of production DNS data in light of our availability model.

Our seed data came from two sources: the ODP/SC08 hostnames (from Chapter 3)

and names submitted via the Web interface of the DNSViz analysis tool [36].

An important part of our study is selecting a representative subset of production

signed zones for analysis. With this objective, our data set includes fewer signed zones

than other analyses [37, 38] because we only crawled dependencies and didn’t traverse

NSEC RRs of signed zones. Names in our data set were either indexed by ODP, queried

by clients at SC08, submitted by interested parties, or a were a dependency of such

a name, so we justify our data set as a representative subset of production zones.

Although 2,170 zones from our data were signed, we needed to further distin-

guish production signed zones from non-production. We accomplished this by first

excluding zones whose names contained “test” or ”bogus” or that were subdomains of

known DNSSEC test namespaces (e.g., dnsops.gov, of the Secure Naming Infrastruc-



79

ture Pilot [39]). We further filtered zones by including only islands of security that

had some public intent to be validated by resolvers. Because the root zone was not

signed during the majority of our analysis, we identified the subset of islands whose

top-most domain had registered with ISC’s DNSSEC Look-aside Validation (DLV)

service [40]. DLV [41] was introduced to allow an arbitrary zone to be securely linked

to a zone other than its hierarchical parent. The result is that a resolver can avoid the

maintenance of a large repository of trust anchors in favor of a single trust anchor for

the DLV service. Other DLV services exist [37, 38], but are populated with DNSKEYs

discovered through DNSSEC polling, which means that users may not have explicitly

opted in for production validation. We therefore consider only zones registered with

ISC’s DLV service as production signed zones.

Based on our qualifications for production signed zones, we considered 1,456 zones

production. We polled the production signed zones every four hours over a period

spanning approximately six weeks. Some zones were only present for part of the

polling period because they were added after our polling period began or because they

were at some point unlinked from their parent zone, resulting in a non-production

status. We included all production signed zones for which we obtained at least 10

samples.

Our analysis examined the authentication chain from each zone’s SOA RR to the

DLV trust anchor. Some of the zones were registered with the DLV at multiple points

in their ancestry. For example, isc.org and org are both registered with the DLV. In

such cases we optimistically selected the path with the most valid results. The results

from our analysis are summarized in Table 5.1.

5.3.1 DNSSEC misconfigurations

We identified errors encountered during our polling period and classified the cause

of such errors as either zone- or delegation-class misconfigurations (we exclusively used

the KSK from ISC’s DLV as a trust anchor, so there were no anchor-class miscon-

figurations in our analysis). Each misconfiguration may account for multiple errors

in our data if affected subdomains are also included in the analysis. For example, a
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Total zones 3,041,212
Production signed zones 1,456
Zone-class errors resulting in failure potential 1.0 134
Delegation-class errors resulting in failure potential 1.0 60
Errors resulting from misconfigured ancestor zones 61 (31%)

Table 5.1: Statistics for the DNS data collected for our analysis.

single misconfiguration in the org zone would result in errors for org as well as any

affected subdomains also in our data. To account for any errors in our polling which

might skew our data, we required errors resulting in complete validation failure to be

detected in two consecutive samples. Over the polling period we detected 134 zone-

class misconfigurations and 60 delegation-class misconfigurations that caused certain

failure (i.e., had a failure potential of 1.0). Of these misconfigurations, 31% were

caused by misconfigurations in a zone’s hierarchy, and would have still been resolv-

able had a soft anchoring system been in use by resolvers, such as that proposed in

Section 5.2 of this chapter.

For each zone we averaged the failure potential calculated at each poll during our

analysis period. The resulting average for each production signed zone is displayed as

a cumulative density function (CDF) in Figure 5.3. For 88% of the production signed

zones, the failure potential averaged 0 or nearly 0. However, 4% of the production

signed zones averaged a failure potential of over 0.4. Surprisingly, about 2% of the

production signed zones were completely unresolvable due to misconfigurations that

persisted through every poll we made to them.

Our analysis of failure potential considers only production signed zones whose

ancestry is linked to the ISC DLV; this doesn’t account for unsigned zones that may

be affected by misconfigurations of signed zones at higher levels. For example, the

expiration of RRSIGs in the arpa zone occurred during our analysis period and affected

the authenticity of its NSEC RRs for insecure delegations, such as in-addr.arpa, which

resulted in bogus responses for in-addr.arpa. However, such were not included in our

analysis. We also analyzed insecure delegation by signed zones by testing for proper

use of NSEC RRs by authoritative servers. We identified 36 signed zones for which one



81

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Failure Potential

Figure 5.3: The CDF describing the average failure potential for production signed
zones during our analysis period.

or more servers failed to return NSEC responses for authenticated denial of existence.

In an analysis prior to our polling period we discovered problems with insecure

delegation from the pt country-code TLD for Portugal, which was signed and regis-

tered with DLV. The problem was that the pt zone was signed with NSEC3, yet two

of the seven servers authoritative for pt were running a DNS server implementation

that didn’t support NSEC3. This scenario resulted in a failure potential of 0.29 for

any subdomain of pt for which the immediate delegation from pt was insecure. We

would anticipate this domain having a significant number of insecure delegations that

were affected. The zone administrators have since fixed this issue.

5.3.2 Complexity analysis

We calculated the hierarchical reduction potential (HRP) for the complete set of

zones and our subset of production signed zones. We used the RNAME suffix as a factor

for comparison, as discussed in Section 5.1.2. The CDF is shown in Figure 5.4. The

stair-step appearance is due to common values produced by typical zone depth and
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Figure 5.4: The hierarchical reduction potential of all sample zones and the subset of
production signed zones.

reduction values (e.g., 1 or 2). In the general zone analysis only about 5% have the

possibility for reduction, based on our criteria. However, in the production signed

zones 16% might be simplified hierarchically to reduce the potential for failure.

We analyzed the administrative complexity for each zone in our set and each

production signed zone. Again we used the RNAME field for each server name u ∈ NSz

authoritative for zone z, as described in Section 5.1.2. The results of our analysis of

administrative complexity with n = 2 is represented as a CDF in Figure 5.5. The

graph shows the administrative complexity for the entire set of sample zones, and the

subset of production signed zones. The large vertical jump at 0.5 reflects a common

case where just two servers are authoritative for a zone, each administered by a

different organization. In such cases it is equally likely to query a server administered

by either of the two organizations and hence have a different view of zone data,

depending on configuration and data consistency.

Nearly 90% of all zones examined have no administrative complexity, which by

definition means that administrative responsibility for the servers authoritative for

each zone is handled by a single organization. However, the subset of production
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Figure 5.5: The administrative complexity of all sample zones and the subset of
production signed zones.

signed zones varies from this trend. Only 75% of these zones have an administrative

complexity of 0, and almost 10% have a complexity greater than 0.5.

5.4 Previous work

Other studies have been performed to quantify DNSSEC deployment in terms of

pervasiveness, availability, and quality. One such project, run by IKS Jena (Informa-

tion, Communication, and Systems) [37], maintains an ongoing status of DNSSEC

signed zones on their Web site. SecSpider [42, 38], another DNSSEC project, discov-

ers signed zones through several means: as discovered by a Web search engine; by user

submission to the SecSpider Web interface; and by traversing NSEC RRs on known

signed domains. It has for several years polled these zones from different world-wide

locations, verifying consistency of results from different vantage points. Zone data

collected from SecSpider was used perform an assessment of availability, verifiability,

and validity of DNSSEC deployments [43].

Our objectives are similar to previous analyses, but our approach differs. In
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this work we focus on consistency of behavior across authoritative servers from a

particular vantage point (under the assumption that our path is reliable), rather than

consistency of experience querying a zone from different client locations. SecSpider

declares a zone DNSSEC-enabled only if all authoritative servers for a zone serve

DNSSEC-type RRs [42]. However, our analysis is based on actual resolver behavior

when configured with a valid trust anchor: unless an chain of trust extends from an

anchor at the resolver, DNSSEC deployments are irrelevant from the perspective of

a resolver.

Other solutions for trust anchor distribution have been proposed, although having

a different overall objective. SecSpider, and its sister project, Vantages [44, 45], collect

DNSKEYs through polling and collaborative sharing over peer-to-peer networks. DLV

services, provided by ISC and others [40, 38, 37], provide resolvers access to trust

anchor repositories (TARs), such as the Interim TAR maintained by the Internet

Assigned Numbers Authority (IANA) [46]. Their collective design is to assist with

reliable distribution of trust anchors for zones that would otherwise remain islands

of security. However, the objective and methodology of our soft anchoring approach

in Section 5.2 is to strengthen chains of trust that already exist for zones that have

“opted in” to DNSSEC validation through some sort of registration with parent zone

(i.e., via DS RRs) or TAR.

5.5 Summary

The DNS is an essential component of the Internet’s architecture. DNSSEC

deployment is under way to protect its integrity, but the additional complexity of

DNSSEC challenges the availability of DNS. Various DNSSEC-related server and

zone misconfigurations can affect not only the corresponding zones, but also the en-

tire namespace below.

In this chapter we presented an availability model for domains which have de-

ployed DNSSEC, using the potential for validation failure as a metric. Additionally,

we proposed two metrics which quantify complexity for DNS configurations and in-

crease the potential for validation failure: hierarchical reduction potential (HRP)
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and administrative complexity. We also proposed a system soft anchoring to main-

tain availability in the presence of misconfiguration. We identified a number of errors

plaguing production signed zones and determined that 31% of these errors might have

been mitigated by the soft anchoring system we described. We also observed a higher

HRP and administrative complexity in production signed zones than in the larger set

of zones.

As the deployment of DNSSEC continues, a thorough understanding of the pro-

tocol accompanied by proper configuration will allow it to be successful. A system

such as soft anchoring will mitigate the impact of misconfigurations resulting from its

early deployment. In addition, administrators should be acquainted with the impact

associated with misconfigurations.
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Chapter 6

Conclusions and Future Work
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In this dissertation we have analyzed name and server dependencies in the DNS

and introduced metrics to quantify their impact on influence and availability of do-

main names. We summarize our conclusions and elaborate on future research in this

final chapter.

6.1 Conclusions

In Chapter 3 we reviewed DNS protocol specification and implementation details

to model name dependencies in the DNS. We identified the trusted computing base

(TCB) of a domain name as the set of other names or administering organizations

which collectively influence resolution of the name. Using our name resolution model

we presented methodology to quantify the level of influence of individual domain

names using a value between 0 and 1. As a representative measure we introduced

third-party influence as the collective probability that resolution of a domain name is

influenced by names not explicitly configured by the zone administrator. We found

that on average 92% of influential domains are explicitly configured by administrators.

This average shows that zone administrators are generally in control of the names-

pace affecting resolution of their domain names, more so than suggested by previous

research. However, when resolvers use server addresses obtained from authoritative

sources, rather than glue records, to query authoritative servers, the average size

of the TCB increases, and so does third-party influence. We also observed that the

practice of chaining domain name aliases increases third-party influence in production

DNS zones.

We used name and server dependencies as a basis for our availability model in

Chapter 4. Using this model domain name availability was quantified using two met-

rics: minimum servers queried (MSQ) and redundancy. Common misconfigurations,

such as inconsistent NS RRsets between parent and child zones, affect both of these

metrics and ultimately decrease availability of a domain name. We observed that

6.7% of domain names had sub-optimal MSQ values, and 14% experienced redun-

dancy less than that with which administrators explicitly configured. Good config-

uration practices for maintaining availability include proper synchronization of NS
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RRsets in parent and child zones and appropriate inclusion of glue records.

We examined DNS availability from a DNSSEC perspective in Chapter 5, using

DNSSEC misconfigurations and server inconsistencies as the basis for determining

the potential for validation failure. We also introduced complexity metrics which can

contribute to increased failure potential: hierarchical reduction potential (HRP) and

administrative complexity. The former is a measure of the extent to which zones under

a single administrative entity might reasonably be collapsed, resulting in less room for

errors caused by maintenance of additional zones or parent/child zone coordination.

The latter describes the diversity of organizations administering authoritative servers

for a zone. We observed that 12% of the production signed zones we polled averaged

a non-zero failure potential over the polling period. Our analysis also shows that the

ancestry of 5% of the zones we analyzed might be reduced to minimize hierarchical

complexity, and 10% have non-zero administrative complexity.

As the Internet grows and more applications rely on its framework, the DNS will

continue to play an integral role in usability. The models and metrics presented in this

dissertation can assist DNS administrators in better understanding their DNS deploy-

ments and avoiding name resolution failure by properly engineering and maintaining

their DNS infrastructures. DNS attacks can be mitigated through security solutions,

such as DNSSEC, but availability hinges on proper application and maintenance.

6.2 Future work

The complexities of the DNS and DNSSEC protocols and the novelty of DNSSEC

deployment leave a number of open issues to better understand and maintain high

availability for DNS name resolution. We discuss in this section several expansions

of this work that would contribute to DNS robustness.

6.2.1 Availability analysis

Our analysis can be furthered to more accurately model DNS availability. The

availability model from Chapter 4 is based solely on name and server dependencies,
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and Chapter 5 views availability only from a vantage point of DNSSEC validation

failure. Integrating the two models would result in a more comprehensive view of DNS

availability, including both DNSSEC and non-DNSSEC dependencies. For example,

if an NS target for a zone is not in-bailiwick, then a resolver must resolve the name

and validate the response to obtain the address, which it can then use for query. In

our analysis, we’ve only considered the case where validation of the response either

succeeds or fails altogether (i.e., failure potential is either 0 or 1). However, a failure

potential between 0 and 1 may affect the validation of the NS target, complicating

the availability of the zone for which the server is authoritative.

Also, our analysis of failure potential induced by DNSSEC misconfiguration did

not consider alias (i.e., CNAME) targets, which must also be resolved and validated

for name resolution. When www.example.com is an alias for www.example.net, its

resolution is completely dependent on resolution of www.example.net, and is also

subject to its failure potential.

The consideration of TTL values in the DNS availability model will provide a

temporal view of name resolution availability, as pertinent data expires from resolver

caches. The value added with this view is an understanding of the persistence of

diminished availability caused by DNS or DNSSEC misconfiguration. For example,

an NS RRset containing targets with validation issues may linger in caches, even after

the authoritative NS RRset has been updated to include other targets, which properly

validate. Administrators might better estimate the worst case duration of potential

availability issues with this extension to the availability model.

A similar circumstance is the caching of bogus data by validating resolvers. RFC

4035 indicates that resolvers may cache bogus data, with the following caveats: the

resolver itself must provide a small TTL value to the bogus data to mitigate a denial-

of-service attack (since the TTL provided by the bogus data is untrustworthy); and to

prevent transient failures, a resolver should only answer from its “bad cache” after a

configurable threshold of failures for a given RRset has been exceeded [7]. The effect of

the TTL value assigned to bogus data in cache and the failure threshold for caching

would provide an interesting perspective to the temporal DNS availability model.

Optimal values would minimize overhead while maximizing availability diminished
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by transient failures.

6.2.2 Operational standards

The DNSSEC-related misconfigurations described in Chapter 5 can be avoided by

proper development of and adherence to operational standards. RFC 4641 [25] is one

of the first such standardized documents for operational guidelines by zone admin-

istrators. Deployment experience since the initial release of this RFC has exposed

new configurations, and new procedural concerns. For example, RFC 4641 assumes a

ZSK/KSK setup, while in actuality some DNS administrators prefer to use a design

involving only a single signing key. Also, stronger cryptographic algorithms have since

been introduced for signing zone data, such as RSA with SHA-2, which is “widely

believed to be more resilient to attack than SHA-1” [47, 48]. However, upgrading

DNSSEC algorithms is a non-trivial procedure not previously covered by RFC 4641.

At the time of this writing, a second revision of RFC 4641 is being drafted as an

updated operational document. While the updated procedures and text will be more

comprehensive, the procedures are nonetheless complex. Various zone management

tools have been developed to ease operational compliance [49], but because operational

procedures are still being standardized, consistent compliance is a challenge.

Although specific operational procedures are helpful, the coordination between

parent and child zone required for seamless KSK rollovers remains an area prone to

errors. Nearly one third of the validation errors we encountered in our analysis were

the result of unsuccessful KSK rollovers. A protocol that might ease this operational

gap is an in-band SEP key rollover between parent and child zones, comparable to

trust anchor rollovers specified in RFC 5011 [35]. The advantage of this protocol is

that it would require communication only between two entities, the parent and child

zones, as opposed to a potentially large number of individually operated resolvers.

6.2.3 Mitigation techniques

Several techniques can be employed by resolvers to mitigate availability issues

caused by validation failures. Validation diligence (i.e., successively querying each
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authoritative server until a valid answer is received) has been implemented in some

resolver implementations, as mentioned in Chapter 5. This technique only improves

availability when a validating resolver is able to query authoritative servers directly

(i.e., is not behind a proxy resolver), and when failure potential is between 0 and

1. The trust model presented in Chapter 5 may be foundational for an deriving an

algorithm that is optimally efficient for such diligence when a resolver encounters

missing or invalid data. This would mitigate availability issues without inhibiting

performance, as was observed in early versions of BIND validating resolvers [50].

The soft anchoring proposal in Chapter 5 is an additional technique that could be

implemented by administrators of DNS resolvers to mitigate the effects of DNSSEC

misconfiguration. It validation problems for zones whose signed ancestor zones are

misconfigured, but only if the zones were previously authenticated by the resolver.

We intend to formalize the idea into an Internet draft to gain support from the global

DNS community in the hope that it might alleviate growing pains with early DNSSEC

deployment.

6.2.4 Preemptive diagnostic advisory

Much of this dissertation has focused on analyzing configurations of DNS deploy-

ments and improving or mitigating existing availability issues caused by misconfig-

uration. Another approach is to preemptively detect and flag configuration changes

that might decrease the robustness or security posture of a domain name, before the

changes become production. A preemptive diagnostic advisory tool would consider

several properties and metrics from models presented in this research in relation to

the domain name whose zone is being modified:

• Third-party zones or organizations in the name’s TCB. Changes to RRs, such

as the zone’s NS RRset or a CNAME RR, may introduce third-party zones (i.e.,

influential zones not explicitly configured by zone administrators) that aren’t

immediately apparent to zone administrators. Third-party zones might be com-

pared against a policy that restricts the name’s TCB to zones known to be trust-

worthy, or explicitly prohibits zones known to be untrustworthy. The reasoning
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might be to avoid dependencies that are known to be unreliable, vulnerable,

adversarial or competitive. A diagnostic tool warn an administrator if zones in

the TCB violate policy.

• Third-party influence. Zone administrators may wish to upper bound for an

acceptable level of third-party influence on the name. For example, setting a

threshold of 0.5 would alarm administrators when in the proposed setup there is

a 0.5 probability that resolution of the name is influenced by third party zones

or organizations.

• MSQ. A change resulting in a sub-optimal MSQ for the name indicates that

more prerequisite lookups than what might be possible are required for resolu-

tion of the name. This may not be problematic, but in such a case, bringing the

servers comprising the MSQ to the attention of the administrator would allow

him the opportunity to assess the situation. Such a result might be attributed

to a misconfiguration, such as a missing glue record.

• Redundancy. If a change results in false redundancy for the name, the cause

may be misconfiguration, such as a missing glue record or multiple targets in

the NS RRset resolving to the same address. It might also be due to a smaller

level of redundancy in a downstream dependency than that being introduced

for the zone in question.

• Validation failure potential. A non-zero failure potential of the name, caused

by misconfiguration in the zone itself or one of its dependencies, is problematic

for validating resolvers. This might be due to changes that break the chain of

trust or that result in failed validation of required dependencies.

Because the purpose of such a preemptive advisory tool is to raise a flag to admin-

istrators that a change might compromise availability or security of a domain name,

it is only effective if the alert comes before the change propagates to production DNS.

A natural extension of this is the ability for an administrator to run several scenarios

through the tool to determine the solution that best meets the local policy. For ex-

ample, a DNS administrator for example.com might have several options for servers
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which might host its authoritative data for high availability, each administered by

a different organization. While the example.org and example.net namespaces may

both be trustworthy, an analysis by the advisory tool may indicate that example.net

is influenced by untrustworthy.net, so using an example.org name server is the safer

choice for the DNS administrator.

A tool for preemptive diagnostic advisory may sufficiently discourage administra-

tors from implementing changes that decrease the availability of their DNS setup.

However, changes made to downstream dependencies may be deployed independently

and without the knowledge of the administrator of a dependent name. Such changes

may affect the properties of availability observed by a DNS administrator after having

initially received no warnings from a diagnostic tool. Additionally, with a DNSSEC

deployment availability may be degraded over time, without intervention, by the ex-

piration of RRSIGs. We propose the following two extensions to diagnostic advisory

that might be used in addition to preemptive checks on a domain name:

• Reverse dependency analysis. While it is impossible to know the extent of

all reverse dependencies of a zone, a reverse dependency analysis might be

conducted using as much information as is available. Such an analysis would

be performed in addition to that of forward dependencies before a change is

introduced, so administrators can be alerted of how the proposed deployment

might affect the availability of dependent names.

• Periodic diagnostic polling. Periodic re-assessment of a DNS setup would allow

a DNS administrator to monitor changes to availability properties, caused either

by changes made to downstream dependencies or expiring RRSIG RRs.

The incorporation of these assessments into a preemptive and polling diagnos-

tic tool, such as that described in this section, may give administrators confidence

in making changes to working DNS deployments and assurance that availability is

maintained over time.
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