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Abstract—As a preventative measure against DDoS attacks,
many Domain Name System (DNS) software installations include
a configurable rate-limiting feature to dismiss abusive traffic. In
this paper we conduct a measurement study of the rate-limiting
configurations employed by DNS servers for popular domain
names, providing a better understanding of the precautions being
taken to protect the DNS infrastructure. We believe that an
improved understanding of existing defense mechanisms will
allow us to propose improvements to the Internet infrastructure
that will ultimately yield a more stable and secure internet.

I. INTRODUCTION

The performance and robustness of the Internet is of
paramount importance due to the mission-critical applications
that rely on it. However, the same high-performance, high-
capacity infrastructure used to keep maintain the Internet’s
stability and resilience can be abused by malicious entities to
carry out powerful attacks. Attackers have devised ways to use
high-performance Internet hardware to overwhelm unsuspect-
ing victims in a class of attack known as a distributed denial-
of-service (DDoS) attack. The attackers issue requests to these
Internet servers, claiming to be the victim, so the responses
from the servers are directed to the victim, effectively over-
whelming it. The powerful Internet servers unwittingly carry
out this reflection attack with astounding effectiveness, since
transmitting and processing requests in the most efficient way
possible is their primary objective.

Response rate limiting was developed to combat reflection-
based attacks that use Domain Name System (DNS) [1],
[2] servers. A knowledge of how this and other defense
mechanisms are currently being deployed will serve to both
inform Internet researchers on the deployment status of DDoS
defense mechanisms and to guide future efforts in combat-
ing DDoS. Acquiring this knowledge entails measuring the
adoption of DDoS defense mechanisms, characterizing the
behaviors associated with their deployment, and measuring
their DDoS mitigation impact. With this data in hand, scientists
and operators alike can evaluate the effectiveness of these
solutions in practice and design and recommend changes to
improve DDoS defense.

∗This work was done while the author was a student at Brigham Young
University.

In this paper we present an empirical study of the de-
ployment of DNS response rate limiting across DNS servers
associated with popular domain names to measure its deploy-
ment and quantitatively assess its impact. We measure key
characteristics of the rate limiting configurations, such as rate
limit thresholds and reduced response size. Additionally, we
evaluate the consistency of rate limiting deployments, across
domain names, servers, and protocols, such as IPv6. The
primary contributions of our paper are the following:

• A measurement of deployed DNS response rate limiting
configurations; and

• An assessment of the DNS response rate limiting deploy-
ment consistency.

This work constitutes a more in-depth analysis than treatments
in previous studies, and in it we identify behaviors that are
potentially problematic, with regard to consistency across
domains and network protocols.

II. BACKGROUND

The Domain Name System (DNS) [1], [2] provides the
translation of domain names to Internet resources, most no-
tably Internet Protocol (IP) addresses. This translation process,
known as name resolution, is the product of communication
between many Internet servers. A stub resolver issues a query
to a recursive resolver, e.g., when a Web browser wants to
know the IP address for www.example.com). The recursive
server issues a series of queries to multiple authoritative
servers in a systematic fashion to find the answer. In addition
to returning the response to the requesting stub resolver, the
recursive server stores the information in its cache for future
queries.

The DNS uses the User Datagram Protocol (UDP) as its
primary transport, thus inheriting both the advantages and
disadvantages of UDP. A DNS communication involves only
a single message in each direction (i.e., a request from the
client and a response from the server), so the use of UDP
is efficient; no connection setup overhead is required, as it is
with the Transmission Control Protocol (TCP). However, UDP
lacks the (weak) source identity verification that is inherently
part of TCP and its connection establishment. Thus, a DNS
server has no way to know whether the source IP address of an



incoming UDP-based request is valid—and that its response
is going to the entity that initiated the request.

Leveraging the lack of source validation in UDP, attackers
send queries to DNS servers, spoofing the IP address of the
victim as the their source, rather than using their own IP
addresses. The well-behaving DNS server, unaware of the
forgery, sends the responses to the victim, resulting in an be-
havior known as reflection. Because the responses are larger—
sometimes hundreds of times larger—than the requests, the
attack also exhibits amplification. The result of the reflection
and amplification carried out by many attackers using many
well-provisioned servers is a concentrated flood of network
traffic that overwhelms the victims. Even reflectors can be
negatively impacted, if they are not as well equipped to handle
the load.

DNS response rate limiting [3] is a mechanism that can be
deployed by DNS servers to dampen the effects of reflection
attacks, servers that would otherwise be desirable reflection
accomplices. With response rate limiting, the server observes
queries that look alike from a given source IP (presumably
a victim of reflection) above a certain rate (the threshold). It
may then issue responses for only a fraction of subsequent
queries and/or return only truncated responses. The fraction
of queries returned by the servers when the threshold has been
reached is referred to as the slip rate. Truncated responses are
minimally sized and marked as incomplete by the server. A
client receiving a truncated response must re-issue the query
over TCP, which, as already discussed, has some inherent
source verification properties.

III. PREVIOUS WORK

Best Current Practice (BCP) 38 [4] documents an approach
to address the problem at its source; it indicates that routers
should drop network packets whose source IP addresses don’t
originate in the network from which they are arriving. While
this solution is seemingly simple, the barrier to its deployment
is that the entities required to deploy it are those with the least
incentive to do so. The networks hosting attack participants are
not negatively affected by the spoofed request traffic. Thus, its
deployment remains relatively low [5].

DDoS potential was measured by van Rijswijk-Deij, et al.
by analyzing request and response sizes for a large number of
DNS domains [6]. Using the observed request and response
sizes they calculated the amplification factor and compared
it to the theoretical maximum. We also measure response
sizes within our own set of domains, but our focus is looking
at amplification reduction through the deployment of DNS
response rate limiting.

MacFarland, et al. performed two empirical studies of rate
limiting on authoritative servers [7], [8]. They used the lack
of responses to one or more (five or more in the second study)
sequential queries, which sequence included the last query, to
indicate rate limiting, with the threshold being the first instance
of a query for which no response was received.

Our current work introduces different methodology as well
as additional metrics for determining rate limit thresholds,

with which we can identify slip rates and other rate limiting
behaviors. We also consider IPv4 and IPv6, both to give a
more comprehensive analysis and to look for inconsistencies
in response rate limiting deployment between the two.

IV. MEASURING DNS RATE LIMIT CONFIGURATIONS

In this section we discuss the methodology we employed to
measure the status of DNS response rate limiting. We limited
the scope of our analysis to DNS authoritative servers.

A. Domain Name Selection

We used two primary sources to construct the set of author-
itative DNS servers we tested for DNS response rate limiting
behavior. The first is the DNS root zone file, from which we
extracted the top-level domains (TLDs) delegated from the
root zone, for which at least one server was responsive. At
the time we ran our experiments, the delegations in the root
zone totaled 1,386. The second is the list of most popular Web
sites, as provided by Statvoo [9], a Web site analysis site. Col-
lectively, the domains we analyzed totaled 922,314. For each
of the the root, TLD, and Statvoo domains, we issued queries
of type NS (name server) to learn the names corresponding to
their authoritative servers. For each authoritative server name
we issued A and AAAA DNS queries to learn the corresponding
IPv4 and IPv6 addresses, respectively. The domain-server pairs
we analyzed totaled 3,872,264.

B. Experiment Methodology

For every domain name in our data set, we analyzed
each of its authoritative servers (both IPv4 and IPv6) by
issuing various DNS queries. Servers authoritative for multiple
domains in our data set were analyzed once for each domain
name for which they are authoritative. We issued a burst of
500 queries of type A in parallel, all within milliseconds.
The intent of the bulk A queries is to elicit response rate
limiting behaviors of the server, from which we can measure
rate limiting thresholds, slip rate, and truncation. We discuss
more the nature of our queries, along with the rationale, in
Section IV-C.

We developed a custom measurement tool to issue the
500 parallel queries. Our tool was written with the Go pro-
gramming language to take advantage of its high-performance
concurrency; each DNS query was handled as a Go routine.
For each query, we recorded the time the query was issued,
whether or not a response was received, whether the response
was truncated, and the response size, among other useful
information.

C. Ethical Considerations

This study involved issuing queries at an abnormally high
rate to intentionally invoke defensive behaviors in the form
of rate-limiting. However, we wished neither to harm the
third-party servers whose behavior we were measuring nor
to inadvertently trigger any defense mechanisms that might
taint our measurements or even get our activities blacklisted.
We therefore took several precautions for the mutual benefit
of our study and the servers we analyzed.



We used the A type for our burst of queries, even though
it is not the preferred type used by attackers for amplification
attacks. While queries for type A generally result in smaller
responses, the literature [3] suggests that rate limiting behav-
iors are generally type agnostic—that is, they are triggered
regardless of query type. Thus we felt that by using queries of
type A we could get nearly the same results as using another
type, but without the negative side effects.

The use of DNS extension mechanisms (EDNS) [10] in
DNS queries can (among other things) be used to: 1) request
additional (DNS security-related [11], [12], [13]) information
from the server; and 2) indicate that the server can exceed
the classic maximum response size of 512 bytes. Because our
intent was to minimize the size of the responses associated
with the burst of 500 queries, we didn’t use EDNS in the
queries, effectively minimizing the response size associated
with the A queries and the possible negative impact to third
parties.

We further managed our activities by limiting each mea-
surement burst to a single set of 500 queries within a second.
While that disallowed us from learning about rate limiting
behaviors whose behaviors required an interval greater than
a single second, this allowed us to maintain a relatively low
profile. Even with the single burst we were able to infer much
from the queries we issued.

Finally, we set up a Web server on the IP address used
to conduct our active measurement, serving a Web page that
includes information on how to contact us and opt out of our
study if desired. We received three inquiries about our rate
limiting activities, none of which included a request to opt
out.

V. RESULTS

In this section we analyze the results of our experiments,
including DNS response rate limit thresholds and other server
behaviors. To help us calculate results we first define several
terms to describe the queries we issued to each server, as well
as their associated responses. Let Q = {q1, q2, . . . , qn} denote
the sequence of n queries, each having the same query name
and type, issued to a given server within a one-second interval,
where q1 was the first query issued. Let R = {r1, r2, . . . , rm}
be the sequence of m responses received from a given server
in response to queries in Q, where r1 was the first response
received. We note that because the queries were issued over
UDP, neither the order of the arrival of queries nor the order
in which responses arrive is deterministic—that is, ri might
not correspond to qi. Let RT ⊆ R be the subset of responses
for which the TC flag was set, indicating that the response
was truncated. Note that we use set operations to represent
the association of query and response sequences, such that
Q∩R represents the set of queries for which responses were
received.

A. Rate Limiting Thresholds

Among the most important features to extract from the data
we collected was the observed rate limiting threshold. This
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Fig. 1. Cumulative distribution of the overall response rate.

allows us to know which servers are configured to perform
rate limiting and how they’re configured. Our data contains
information from 3,872,264 domain name-authoritative server
pairs.

The simplest way to detect the rate limit thresholds exhib-
ited by the servers we queried is to first compare the number
of complete (i.e., not truncated) responses returned by the
server against the total number of queries issued. This naı̈ve
threshold, t, is calculated by considering the response behavior
for the entire set of queries, Q, as a collection:

t =
|R| − |RT |
|Q|

However, there are several potential problems with this naı̈ve
approach to rate limit threshold calculation. The fundamental
issue is that even servers not configured to rate limit queries are
unlikely to respond to 100% of the burst of identical queries
that we subjected them to because of the statistical probability
of loss due to network or server errors. For example, the plot
in Figure 1 shows the comprehensive response rate (i.e.,

t =
|R|
|Q|

) for queries issued to each server for each domain for which
it was authoritative. The median response rate was 0.995,
indicating at least three responses were dropped by half of
servers. As such, a lack of response doesn’t necessarily mean
that the request was not answered because of rate limiting.
This leads to two related side effects. First, the most common
rate limit thresholds might not be detected as accurately
because they are mixed with the casualties of network loss.
Second, the statistical loss results in false positive detection
of rate limiting with arbitrary thresholds.

To address these shortcomings, we used a sliding window
algorithm to detect the rate limiting threshold for servers
queried. Rather than looking only for the first instance of an
unanswered query or a truncated response, we iteratively ex-
amined sub-sequences (windows) of the queries in Q, looking



0 100 200 300 400 500
Rate Limit Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

%
 o

f S
er

ve
rs

Fig. 2. Distribution of rate limit threshold calculated using the sliding window
algorithm with w = 8.

for behavioral trends within the window that indicate that a
rate limiting threshold has been reached by a server. Each
window has w elements, w ≥ 1. Where a window begins at
index i (starting with i = 0), the query sequence comprising
the window is {qi+1, qi+2, . . . , qi+w}, such that the chrono-
logically first window considered is: {q1, q2, . . . , qw}. Iterating
over queries in Q chronologically, the first window in which
half or fewer of the w queries received complete (i.e., non-
truncated) responses indicated that a rate limiting threshold
had been reached. The value of the threshold is the midpoint
in this window, i.e., i+ w

2 . Symbolically, this sliding window
threshold, t(w), is represented as follows:

t(w) =
w

2
+ min

0...n−w
i | |{qi+1, qi+2, . . . , qi+w} ∩ (R−RT )|

w
≤ 0.5

Using a window size, w = 8, we identified 645,979 server-
domain pairs (16.7% of the total) that were using rate limiting.
Figure 2 shows the plot of threshold values as a percentage
of servers that were identified as performing rate limiting for
their domain.

1) Server Behavior Consistency: We considered rate lim-
iting consistency for the servers that are authoritative for
more than one domain in our set. To answer the question of
whether a server handled rate limiting consistently among all
the domains for which it is authoritative, we calculated the
range of thresholds exhibited by a server across all the domains
it served. The result is shown in Figure 3 as a cumulative
distribution of ranges. The distribution in this graph clearly
shows two common themes. While about 60% of IPv4 servers
and 45% IPv6 servers behaved with absolute consistency—in
terms of rate limit behavior across different domains for which
they are authoritative—about 5% of IPv4 servers and 10% of
IPv6 servers demonstrated rate limiting extremes for different
domains (i.e., the server exhibited rate limiting with a very
low threshold for one and didn’t rate limit the other at all).
The balance of servers exhibited a range of rate limit threshold
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Fig. 3. Cumulative distribution of range of rate limit thresholds exhibited by
DNS servers across domains for which they are authoritative.
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Fig. 4. Cumulative distribution of range of rate limit thresholds exhibited by
DNS servers across address families—IPv4 and IPv6.

above 0 and below 490, with the value of these being ranges
uniformly distributed.

For a sample of about 462,600 server names (per domain)
with both IPv4 and IPv6 addresses, in which rate limiting was
detected for at least one address, we analyzed the consistency
of rate limiting behavior across these address families. We did
this by subtracting the rate limiting threshold measured for the
IPv6 address from that measured from the IPv4 address, such
that a negative value indicated more aggressive rate limiting
(i.e., lower threshold) by the IPv4 address family and a positive
value indicated more aggressive rate limiting by the IPv6
address family. Our results are shown in Figure 4. While
in about 80% of the cases there was complete consistency
between IPv4 and IPv6 addresses corresponding to the same
server name, IPv6 had higher thresholds for about 15%,
including about 2% of server names for which there was
extreme rate limiting on the IPv4 address and no rate limiting
at all on IPv6. With the rise in IPv6 deployment, this is another
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Fig. 5. Distribution of slip rate across rate limiting servers.

caution that IPv6 configurations should (at least) mirror IPv4,
so its neglect doesn’t create a loophole for exploitation by
malicious entities.

B. Slip Rate

Considering only the servers identified as exhibiting rate
limiting behaviors we now examine their slip rate, s—that is,
what percentage of responses are returned after the threshold,
t, has been reached:

s =
|{qt, qt+1, . . . , qn} ∩R|

n− t

Figure 5 shows the distribution of the slip rate among servers
exhibiting DNS rate limiting behaviors. The median slip rate
for rate limiting servers is 0.4, indicating the half of servers
reduce their response rate by at least 60%. One in three rate
limiting servers that we analyzed reduced their response rate
by 90%. About 5% of rate limiting servers maintained a slip
rate of at least 95% after their thresholds had been reached.
About 5% of servers employing rate limiting exhibited a slip
rate of 0.5. This is not surprising as it is the default value in
the literature [3]1.

C. Truncation Rate

Of responses received after the rate limiting threshold has
been exceeded, we consider the percentage of responses which
are truncated, which we refer to as the truncation rate, c,
calculated as follows:

c =
|{qt, qt+1, . . . , qn} ∩RT |
|{qt, qt+1, . . . , qn} ∩R|

Figure 6 shows the distribution of the truncation rate among
servers exhibiting DNS rate limiting behaviors. The plot shows
that 85% of servers don’t truncate at all. Only about 3% of
servers truncate nearly every time. The latter is more like the
proposed implementation in the literature [3].

1Note, however, that we express slip rate as a fraction, whereas the literature
and server documentation often use the inverse, e.g., 2 instead of 0.5
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Fig. 6. Distribution of truncation rate across rate limiting servers.

D. Validation

To validate our measurement methodology, we set up a
testbed with a Linux server running an instance of the Berkeley
Internet Name Domain (BIND) [14] configured as a DNS
authoritative server for a contrived domain, which we refer
to as example.com. From a separate client, we ran our
custom rate limiting measurement tool, issuing queries for
example.com to the testbed server. To emulate some of the
uncertainties of the real Internet we configured the server such
that:

• DNS responses from the server were dropped with a 1%
probability according to a uniform random distribution
(using the iptables command); and

• A random delay uniformly distributed between 20
and 60ms was introduced for every server response (using
the tc command).

The random drops and transmission delays introduced at the
server simulated DNS response timeouts and out-of-order
processing at the client.

In our testbed, we validated our threshold measurement
by issuing analysis queries against the BIND server using
different configured rate limit thresholds and a fixed slip rate
of 0.5. We analyzed the server’s behavior with rate limit
thresholds of 1 through 10, multiples of 10 between 10 and
100, and multiples of 100 between 100 and 300. We plotted
both the naı̈ve threshold and the sliding window (w = 8)
against the configured threshold in Figure 7. The consistency
of our measurements (the Y-axis values) with the configured
rate limit settings (X-axis values) is demonstrated by the
measurements’ close proximity to a line with a slope of 1
(i.e., y = x). Both the naı̈ve and the sliding window values
are consistent with the rate limit threshold configured at the
server.

We validated our slip measurement by issuing analysis
queries against the BIND server using different configured
slip rates with a fixed threshold of 50. We configured the
server with slip values of 0.0, 0.1667, 0.20, 0.25, 0.50, and
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rates.

1.0. The measured slip values are plotted in Figure 8 against
the configured values. Just as with the threshold validation,
the line of plotted values having a slope of 1 demonstrates the
consistency between the configured and the measured values.

BIND doesn’t have a way to configure truncation rate;
responses returned after the threshold has been reached are
always truncated. We observed that, with the exception of two
data points, for which out-of-order, non-truncated responses
arrived after the detected rate limit threshold, the truncation
rate was 100%.

VI. CONCLUSION

In this paper we have considered the state of DNS re-
flection and amplification attacks, reviewed common defense

mechanisms, and performed an empirical assessment of their
deployment using DNS queries. In particular we have analyzed
high-performance Internet DNS servers that are, with their
high-performance resources, well positioned to play the role
of reflector in reflection-based DDoS attacks. We found that
about 16% of authoritative DNS servers employ some sort of
rate limiting. We also found that, for the most part, behaviors
are consistent across servers for a given domain and for
domains common to a server, with some exceptions. However,
there is some concern that IPv6 is not being configured as
consistently as IPv4 for rate limiting defenses, as demonstrated
in our study.

The Internet will continue to be used for both good and for
malicious purposes, and finding ways to combat the latter is an
important task. Understanding the state of deployment through
measurement activities such as these can both inform the
present and shape the future, in the defense of the Internet and
its users. An important implication of this study and related
work is the fact that DNS servers deploying rate limiting and
like defensive measures are not the primary targets or victims.
Thus, understanding their deployment helps us understand the
somewhat altruistic efforts that are being used in defense of the
greater good and what might incentivize future such efforts.
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