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Abstract. The Domain Name System (DNS) has been frequently abused
for Distributed Denial of Service (DDoS) attacks and cache poisoning
because it relies on the User Datagram Protocol (UDP). Since UDP is
connection-less, it is trivial for an attacker to spoof the source of a DNS
query or response. DNS Cookies, a protocol standardized in 2016, add
pseudo-random values to DNS packets to provide identity management
and prevent spoofing attacks. In this paper, we present the first study
measuring the deployment of DNS Cookies in nearly all aspects of the
DNS architecture. We also provide an analysis of the current benefits of
DNS Cookies and the next steps for stricter deployment. Our findings
show that cookie use is limited to less than 30% of servers and 10% of
recursive clients. We also find several configuration issues that could lead
to substantial problems if cookies were strictly required. Overall, DNS
Cookies provide limited benefit in a majority of situations, and, given
current deployment, do not prevent DDoS or cache poisoning attacks.
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1 Introduction

The Domain Name System (DNS) is an essential backbone of the internet used to
translate domain names to Internet Protocol (IP) addresses. Since its inception
in the 1980s, the DNS has been reliant on the User Datagram Protocol (UDP).
While UDP has a major benefit of speed, its lack of identity management is
easily exploitable. Off-path attackers can spoof UDP packets to pretend they, or
a victim, are the source of the packet.

There are two major attacks utilizing spoofing. The first is cache poisoning,
wherein an attacker sends malicious responses pretending to be a legitimate
server. If successful, the victim is unknowingly directed towards a malicious IP
address. The other attack is a DNS reflection attack. This attack is carried out
by sending many DNS queries with the victim’s IP address as the spoofed source
and results in the victim being flooded with unsolicited response traffic—a form
of distributed denial-of-service (DDoS).

Both cache poisoning and reflection-based DDoS attacks exploit the lack of
verification inherent with UDP. In an attempt to solve this issue, and provide
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identity management in the DNS, a new protocol, known as DNS Cookies, was
standardized through the Request for Comments (RFC) process in 2016 [11].
With DNS Cookies, both client and server include a cryptographic identifier (the
cookie) in their DNS messages which can then be verified in future messages. An
off-path attacker is unable to learn the cookie values and thus cannot feasibly
spoof them.

Since 2016, DNS Cookies have become increasingly common and are sup-
ported by many open-source DNS software vendors. However, to the best of our
knowledge, no research has been done to quantify the level of support for cookies.
The major contribution of this paper is a study of client- and server-side
support for DNS cookies—the first such measurement of its kind. Addition-
ally, we analyze DNS Cookie enforcement to see if any client or server rejects
illegitimate DNS messages based on cookies. While clients and servers may be
exchanging cookies, there is no benefit unless a missing or incorrect cookie affects
the server’s response.

In this paper, we make the following contributions:

– We measure support for DNS Cookies in high-demand authoritative DNS
servers and open resolvers Internet-wide; we find that 30% of servers fully
support cookies, and only 10% of recursive clients send cookies.

– We analyze the DNS Cookies we observed and discover several potential mis-
configurations, such as inaccurate server clocks, some of which could break
implementations.

– We examine the behavior of DNS clients and servers when encountering
missing or illegitimate cookies and find that 80% of clients do not reject
responses when they should and that 99% of servers handle these situations
in the least restrictive manner by responding indifferently.

– We discuss the path forward for wider DNS Cookie adoption and possible
solutions for enforcing the use of cookies.

Overall, our work, which is the first to measure DNS Cookies in the wild,
reveals a low level of adoption and minimal enforcement of DNS Cookies. We
believe that DNS Cookies have the potential to benefit the DNS, but greater
adoption and strategies for enforcement are required.

Artifacts: The source code and datasets used to produce this paper can be
found at the following link: https://imaal.byu.edu/papers/2021_pam_dns_
cookies/.

2 Background

The Domain Name System (DNS) is primarily used to convert domain names
(e.g. example.com) to Internet Protocol (IP) addresses (e.g. 192.0.2.1) [18,19].
There are three components in the DNS: stub resolvers, recursive resolvers, and
authoritative servers.
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Stub resolvers are typically associated with end-devices such as a phone or
desktop. To visit a given domain, a stub sends a DNS query to its configured
recursive resolver. The recursive resolver can respond to the query immediately
if the answer is cached. Otherwise, it queries several authoritative servers sys-
tematically until it obtains the answer.

The DNS continues to utilize the User Datagram Protocol (UDP) as its pri-
mary transport protocol. UDP does not provide identity management and there-
fore does not protect against spoofing attacks, wherein an attacker impersonates
a client or server by using their IP address as the source.

One attack that utilizes spoofing to impersonate an authoritative server is
DNS cache poisoning. With cache poisoning, an attacker can respond to a client
with a malicious IP address, causing that client, and all who rely on its cache,
to be redirected to the malicious IP.

Due to the severity of a successful cache poisoning attack, several measures
have been encouraged to reduce the chance of a successful cache poisoning.
These include source port randomization [15] and 0x20 encoding (randomized
capitalization) [6]—both of which require only changes to client-side software.
Another avenue would be for a client to use DNS-over-TCP [10], DNS-over-
TLS (DoT) [14], or DNS-over-HTTPS (DoH) [13]. These three protocols all
provide the identity management inherent in the TCP handshake, and DoT and
DoH are showing increased adoption [9,17]. However, they result in increased
latency [7]. A final approach, which avoids identity management altogether, is
cryptographically authenticating DNS responses. This strategy is employed by
DNSCurve [1] and the DNS Security Extensions (DNSSEC) [3,4,5]. Neither of
these methods has seen widespread adoption.

Another attack that exploits the lack of identity management in UDP and
the DNS is distributed denial-of-service (DDoS) attacks. Here the attacker im-
personates the victim’s client and sends many DNS queries. This results in traffic
being reflected off of DNS servers and the victim being flooded with unsolicited
response traffic. Past attacks have reached traffic volumes of 300Gbps to 1.2Tbps
and are capable of affecting major services such as Amazon and Netflix [20,12].
Both of these attacks can have major effects but can be prevented with some
form of identity management.

DNS Cookies [11] are designed as a lightweight mechanism that provides
identity management at a strength similar to TCP, but without the latency bur-
den. They are included in DNS messages as a COOKIE option inside the Extended
DNS (EDNS) OPT resource record [8]. Both the client and server in a given com-
munication can provide a plain-text cookie in their DNS messages. The client
can then verify that the server includes the client cookie (i.e., provided by the
client) in future communications—and vice-versa—to ensure that messages have
not been spoofed by an off-path attacker. An example of this process is shown
in Figure 1. DNS Cookies do not provide protection against on-path attackers,
but should still provide substantial benefit to securing the internet as a whole.

Client cookies are 8 bytes in length and are used to prevent cache poisoning by
enabling the client to verify the server’s identity. A stub or recursive resolver can



Client Server
query + client_cookie(0xab...)

response + client_cookie(0xab...) + server_cookie(0x12...)

Verify Client

Cookie Matches

query + client_cookie(0xab...) + server_cookie(0x12...)

Verify Server

Cookie Matches
response + client_cookie(0xab...) + server_cookie(0x34...)

http://msc-generator.sourceforge.net v6.3.5
Fig. 1. An example communication using DNS Cookies. Here the client starts from a
fresh state and reuses its cookie whereas the server generates a new cookie per query.

include a DNS client cookie in their queries and only accept a response containing
the cookie. The suggested implementation for generating a client cookie is to use
a cryptographic hash of the (Client IP |Server IP |Client Secret). More recent
suggestions remove the inclusion of the Client IP as it may not be known at
the time of generation [21]. Regardless, a client should use a unique cookie per
server and should not reuse a cookie across IP addresses as this would enable
tracking the client.

A server cookie ranges in size from 8 to 32 bytes and is used to confirm a
client’s identity, in turn preventing reflection-based attacks. Authoritative and
recursive servers may choose to send a server cookie when responding to a query
with a client cookie in it. Clients should then include this cookie in future queries
to verify their identity. If a server receives a query without a valid server cookie
they may enforce cookie use by responding with the BADCOOKIE response code
(rcode), a valid server cookie, and no DNS answers. The specification suggests
that a server cookie consists of a 4-byte nonce, 4-byte timestamp, and an 8-byte
cryptographic hash of the (Server Secret |Client Cookie |Nonce |Time |Client
IP). The time field results in a new cookie for every request and makes rejection
of outdated cookies easy. Additionally, the server does not need to save any state
to verify a cookie as the nonce and timestamp are provided in plain-text.

In 2019 an Internet draft was created to standardize the format for DNS
Cookies to allow interoperability between different DNS software [21]. Of note,
server cookies were visibly changed as the nonce was replaced with a version and
reserved field.

3 Support for DNS Cookies

Here we establish a baseline measurement for DNS Cookie usage from the per-
spective of both clients and servers. We analyze DNS server-side cookie behavior,



which includes both authoritative DNS servers and recursive resolvers in their
“server” role to clients. For this analysis, we classify varying levels of support:
EDNS capability (via the inclusion of an option (OPT) record in a response),
echoing of a sent client cookie (only), and full support with a returned server
cookie. While echoing a client cookie is not a specified option in the protocol, it
does still protect the client. We also measure cookie usage of recursive resolvers
in the “client” role in connection with queries to authoritative servers under our
control. An analysis that included all perspectives would have included DNS
Cookie use by stub resolvers in their communications with DNS recursive re-
solvers. However, that data is available only to recursive server operators, so we
were unable to perform an analysis of stub resolver behavior with respect to
DNS Cookies.

3.1 Server-Side Cookie Support

We queried a set of open recursive resolvers and two sets of authoritative servers
to measure DNS Cookie support for “servers”.

To generate a set of recursive resolvers to test, we issued a DNS query (for
a domain we control) to every IPv4 address. We classified an IP address as a
recursive resolver if it 1) queried our authoritative server or 2) responded to our
query with the recursion available (RA) flag set and a response code of either
NOERROR or NXDOMAIN. This data was collected from September 24–26, 2020. In
total, we identified 1,908,397 open recursive resolvers.

For authoritative servers, we analyzed servers authoritative for the top 1
million Alexa domains [2] (actually 770,631 domains) and servers authoritative
for the 1,509 top-level domains (TLDs) [16] (including the root servers). All
data was collected on September 30, 2020, using the latest Alexa file and root
zone available. The names and IP addresses (IPv4 and IPv6) for each domain
in the collective lists were determined through 1) a lookup of type NS (name
server) for the domain and 2) a lookup of type A and AAAA (IPv4 and IPv6
address, respectively) for each name returned in the NS query response. In total,
we recorded 157,679 IP addresses for the Alexa sites and 6,615 for the TLDs.

To identify support for cookies, we issued up to 6 DNS queries to each
server—stopping early if we received a response with a server cookie. We in-
cluded the same client cookie in every query. During these queries, we experi-
enced errors with 48% of resolvers, likely due to high churn. In particular, queries
for 32% of resolvers timed out, and for 16% of resolvers, we received a response
from a different IP address (often Cloudflare’s 1.1.1.1) than we had queried.
Removing these cases leaves us with 999,228 error-free resolvers. For authori-
tative servers, queries to 6,724 (4.3%) of Alexa IPs resulted in an error, as did
queries to 58 (0.88%) TLD IPs. The errors associated with querying authorita-
tive servers primarily consisted of time outs (98% of Alexa errors and 100% of
TLD errors), though there were a handful of malformed packets or unexpected
responses. We report all of our results as percentages of communications with
error-free servers.



EDNS, which is a prerequisite for cookies, was supported (as evidenced by an
OPT record in responses) by 699,402 (70%) of recursive resolvers, 147,878 (98%)
of Alexa IPs, and 6,557 (100%) of TLD IPs. The client cookie that we sent in our
queries was returned by 208,526 (21%) of recursive resolvers, 48,262 (32%) of
Alexa IPs, and only 1,249 (19%) of TLD IPs. The remaining servers returned a
response that either did not include a COOKIE EDNS option or included a client
cookie that did not match the one we sent. Servers that included a server cookie
in their response (this implies the inclusion of a client cookie, by specification)
include: 167,402 (17%) of open resolvers, 43,649 (29%) of Alexa IPs, and all 1,249
of the TLD IPs that returned the correct client cookie. However, 14 resolver IPs
and 5 Alexa IPs returned a COOKIE option with a server cookie of all zeroes. The
Alexa and TLD IPs that returned server cookies were collectively authoritative
for 26,629 domains and 373 zones respectively.

Of note, 93 Alexa IPs and 41 resolvers IPs responded with a client cookie that
did not match the one we sent. For 5 Alexa IPs and 22 resolvers IPs, the value of
the client cookie returned was off by only one byte—the fourth most significant
byte. An additional 5 Alexa and 14 resolver IPs replied with zeroed out client
cookies. A single TLD IP, one of three servers authoritative for the gm TLD,
returned a COOKIE option with all zeroes for both the client and server cookies.
The remaining unexpected responses did not follow a discernible pattern.

Overall we observe high EDNS support (70% of resolvers and >98% of au-
thoritative servers). However, cookie support is much lower. While nearly one-
third of Alexa IPs fully supported cookies, less than 20% of TLD IPs and re-
cursive resolvers did. As a result, there are still more than 100,000 authoritative
servers and 800,000 recursive resolvers that can be used for reflection attacks
because they lack a mechanism for validating client identity.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

RRs
Alexa
TLDs

Sent Server Cookie Echoed Client Cookie Sent EDNS

Fig. 2. Incremental support for DNS Cookies across the three datasets of recursive re-
solvers, TLD authoritative servers, and the top 1m Alexa authoritative servers. Servers
in the leftmost group fully support DNS Cookies.

3.2 Client-Side Cookie Support in Recursive Resolvers

During our measurements of resolvers supporting the “server” role of cookies,
we also measured their support for DNS Cookies while acting as a “client”.
Each query we issued consisted of a special domain name hosted at authoritative



servers under our control. We recorded each incoming query for the domain name
we were using and responded with NXDOMAIN and full DNS Cookie support. We
observed queries to our authoritative servers from 93,395 unique IP addresses,
of which 8,471 (9.1%) sent at least one response that contained a COOKIE option.

During this measurement, we encoded the IP address of the recursive resolver
that we queried in the domain name. This reveals that 1,552,397 unique resolvers
queried our backend through the 90,000 IP addresses. This discrepancy may
be due to forwarding, as 56% of resolvers were represented by only 1000 IP
addresses. In particular, Google and Cloudflare handled queries for 36% and
7.0% of resolvers respectively.

In our measurement for recursive resolvers sending cookies, we found client
cookie support to be minimal. Of resolvers that queried our authoritative servers
directly, only 9.1% of over 90,000 IPs sent a cookie. This is potentially alarming
as these resolvers are not using cookies for cache poisoning protection. While
they may employ other methods, DNS Cookies offer an extra layer of defense.

4 Server Cookie Analysis

For our measurement of DNS server cookies, we expand the datasets from 3.1.
For each IP address we found to be sending server cookies, we sent an additional
60 queries. These queries were broken into 3 subsets: the first 20 queries never
included a server cookie, the next 20 included the first server cookies received,
and the final 20 included the latest server cookie we had received. Each subset
had a 1-minute pause after the first 10 queries, before issuing the final 10 queries.

Valid server cookies may be anywhere from 8 to 32 bytes in length. Of all of
the cookies we received, >99% were 16 bytes in length.

4.1 Dynamic Cookies

Many server cookies are dynamic: changing consistently due to the inclusion
of a timestamp (representing seconds since UTC). This follows the suggested
implementation in the RFC. Additionally, the newer format of interoperable
cookies includes a timestamp in the same position.

As a result, we classify a cookie as dynamic if bytes 5–8 represent a time
within a window of 1 hour in the past and 30 minutes in the future compared
to the current time of our querying machine (NTP synchronized). 3

Over 99% of authoritative servers and 83% of recursive resolvers that sent
server cookies used at least one dynamic cookie.

Timestamps We first consider the timestamps being used in dynamic cookies.
We are primarily interested in three unusual patterns: timestamps consistently

3 The chance of a non-dynamic cookie being classified as dynamic is extremely small.
Our window size accepts only 5,400 values out of the 4.3 billion possible values in
the 32 bit field.



off by more than a minute, cookies that are “sticky” for short periods, and
slow-moving timestamps that update on a fixed interval of 10 or more seconds.

For each dynamic server cookie, we compared the timestamp with the cur-
rent time of the querying machine (i.e., the client), which was NTP-synchronized:
tsdiff = tscookie − tsclient. We consider a server cookie’s timestamp to be ac-

curate if |tsdiff| ≤ 5s. This generous window accounts for any network delays.

We consider a timestamp to be significantly out-of-sync if |tsdiff| > 60s. Fi-

nally, we classify “sticky” and slow-moving clock servers based upon the number
of distinct values of tsdiff since this tells us that the tscookie remained static

while tsclient advanced. “Sticky” servers are defined by having 8 or more dis-
tinct values in one of the 3 subsets of queries and less than 3 distinct values in
another. Slow-moving clocks are defined by not being sticky and having 10 or
more distinct values across all cookies.

Table 1 summarizes the major findings for each IP address. Over 95% of IPs
consistently returned server cookies with accurate timestamps. For 2.8% of IPs,
the timestamps were significantly out-of-sync, likely due to an incorrect clock.
While an incorrect clock is unexpected, it is inconsequential for cookies since the
cookie value only matters to the server itself.

A category that is perhaps more interesting is IPs for which we observed a
mix of cookie timestamp behaviors—some accurate and some significantly out-
of-sync. For example, one IP returned cookies resulting in the following values
of tsdiff: (1 1 1 1 75 1 2 1 75 1. . . ). The timestamps for approximately one-

fifth of the responses were consistently and significantly out-of-sync, while the
remainder were accurate. This behavior is representative of a DNS server with
five backend servers, one of which has a clock that is 75 seconds out of sync.

We additionally observe that some IPs use “sticky” cookies: cookies that
remain static for short periods (typically 10 seconds) depending on the context.
We observed two implementations of this. In the first implementation, cookies
were sticky when our client was not querying with a server cookie. Once our
client began sending server cookies, the server replied consistently with accurate
timestamp cookies. We observed that 77 Alexa IPs and 775 resolver IPs followed
this pattern. The second implementation acted in the opposite manner: the server
replied with accurate timestamp cookies until our client sent one of the server
cookies in a query. The server then made that valid cookie sticky and did not
change it for a short period. We saw this pattern in only 12 Alexa IPs and 12
recursive IPs.

Our final category consists of slow-moving clocks: cookie timestamps that
update on a fixed interval of 10 or more seconds. We classified 20 Alexa IPs and
4,413 recursive resolver IPs in this category. We observed that 3,296 recursive
IPs had at least one timestamp off by more than 2 minutes and that 2,206 IPs
displayed strictly increasing tsdiff values across every set of 10 queries. From

this, we can gather that most recursive resolver IPs are using a slow-moving
clock (possibly intentionally) with an update period of over 2 minutes.

The timestamps in DNS Cookies proved to be more interesting than origi-
nally expected. We found that most servers always return a cookie with a current



timestamp; however, some implementations purposely hold onto a cookie for a
short period. We also discovered potential configuration issues with some back-
ends of an IP having an incorrect clock. If cookies were to be enforced, clients
may be intermittently rejected if they present that backend’s server cookie to
another backend, and the cookie was too far out-of-sync to be considered valid.

Table 1. Summary of timestamps found in server cookies returned by IPs. tsdiff repre-

sents the difference between the timestamp in the cookie and the querying computer’s
current time.

Alexa TLDs RRs

All Cookies Accurate (|tsdiff| ≤ 5s) 41,639 (96%) 1,225 (98%) 131,520 (95%)

All Cookies Out-of-Sync (|tsdiff| > 60s) 1,615 (3.7%) 17 (1.4%) 3,544 (2.6%)

Mixed Accurate & Out-of-Sync 66 (0.15%) 0 (0.0%) 2,980 (2.2%)
“Sticky” Cookies 89 (0.21%) 0 (0.0%) 787 (0.67%)
Slow-Moving Clocks 20 (0.05%) 0 (0.0%) 4,413 (3.2%)

IPs Using Dynamic Cookies 43,345 1,246 138,865

Interoperable Cookies Interoperable Cookies are designed to standardize the
generation of cookies across varying backend implementations. We classified a
server cookie as interoperable if the cookie started with 0x01000000 as specified
in the RFC draft (a one-byte version field and three bytes reserved) and the
timestamp field met the criteria previously mentioned.

Of the 43,737 Alexa IPs that returned a server cookie, 1,778 (4.1%) used
interoperable cookies consistently. For TLDs, 92 (7.4%) of 1,249 IPs used inter-
operable cookies. No IP in either dataset sent a mix of standard and interoperable
cookies across all of our queries.

For the 167,402 recursive resolver IPs that sent a server cookie, we found that
30,078 (18%) sent at least one interoperable cookie. However, we also found that
10,948 (6.5%) of IPs sent a mix of interoperable and standard dynamic cookies
4. This behavior was unexpected as the primary purpose of interoperable cookies
is to standardize cookies across all backend servers behind a single IP address.

Overall adoption of interoperable cookies was low in authoritative servers
(under 10%), but partial support in recursive resolvers was higher at 18%.

4.2 Static Cookies

While the majority of cookies can be classified as “dynamic”, a number of servers
reused the same cookie. We classified a server as using static cookies if only a
single cookie was used across our tests and the cookie did not contain a dynamic

4 It is possible that we misclassified a standard cookie with a nonce of 0x01000000

as being interoperable. 9,990 of these IPs sent at least two cookies that appeared
interoperable in response to our 60 queries.



timestamp. We identified 38 recursive resolvers that used a unique 32-byte cookie
for the entire duration of our test. Similarly, 33 Alexa servers always replied with
a single, unique 8-byte cookie.

We further analyzed IPs for 4 Alexa domains that sent static cookies: ibb.co,
pantip.com, postimg.cc, and wikipedia.org. For each IP address authorita-
tive for these domains we sent queries every minute for four days and additional
queries with varying client cookies and client IP addresses.

Our results show that all four domains used the client IP address and client
cookie in the creation of their server cookie because changing either of these
variables affected the cookie they returned. Each also changed their cookie at
the start of every hour, implying that they either changed their secret or that an
hourly timestamp was considered in the calculation. Of note, the authoritative
servers for two domains—wikipedia.org and pantip.com—returned the same
server cookie, regardless of which server was queried for the domain. However, the
servers authoritative for ibb.co and postimg.cc acted independently, implying
separate server secrets or some other unique value per server.

5 The State of Cookie Enforcement

In this section, we explore how clients and servers handle unexpected behav-
ior. We begin by demonstrating to clients and servers that our infrastructure
supports cookies. We then perform tests with missing cookies, missing EDNS,
or fake cookies. With this, we can see whether clients and servers will enforce
cookies if they know the other party supports them. If not, cookies provide little
value as an attacker could simply exclude cookies in their spoofed packets.

5.1 Client Handling of Unexpected Server Behavior

For this experiment, we forced the 1.5 million resolvers (with or without cookie
support) found in section 3.2 to query our authoritative servers 6 times. We
configured our authoritative server to respond differently depending on the query
name it received. The response conditions we created are as follows (in order):

1. normal: Respond with full cookie support: Correct client cookie and a server
cookie—if the query included a client cookie.

2. no-cookie: Respond with no COOKIE option.
3. bad-answer: Respond with the correct client cookie (if any), BADCOOKIE

rcode, and an answer section.
4. bad: Respond with the correct client cookie (if any), BADCOOKIE rcode, and

no answer section.
5. no-edns: Respond with no OPT record (i.e., no EDNS support).
6. fake: Respond with incorrect client cookie.

For each query, we made up to 3 attempts, as the stub resolver, to receive an
answer. This experiment was run approximately one week after we discovered
the 1.5 million IPs. As a result, we experienced a high churn and only saw



528,832 (34%) of IPs respond with both an answer and an rcode of NOERROR in
our normal condition. 5

Responses with Missing/Invalid Client Cookies Of those resolvers from
which we still received responses, 28,605 (5.4%) included a cookie in the normal
condition (or the intermediate IP did). For these IPs in the no-cookie scenario,
we surprisingly got a normal response from 23,979 (84%) IPs. Of those with bad
responses, 3,625 (13%) had a SERVFAIL rcode and an additional 909 (3.2%)
timed out. For the no-edns queries, we saw similar numbers compared to those
who sent cookies: 24,798 (87%) responded to our stub resolver normally, 2,495
(8.7%) responded with SERVFAIL, and 1,236 (4.3%) timed out.

Finally, in the fake category, we began to see more rejection. This test was
performed a day after no-edns and as a result, there was more churn and some
servers may have stopped sending EDNS since we appeared to not support it. We
recorded 27,079 IPs which sent a cookie in a normal query directly preceding
this test. We saw a much lower percentage of acceptance here with only 5,115
(20%) responding to the stub resolver normally. Most failure is split between
SERVFAIL with 10,059 (40%) of IPs and time outs with 9,564 (38%) of IPs.

The specification for DNS Cookies states that a client must discard a response
with an invalid client cookie or a missing cookie when one is expected. However,
we observed that 20% of recursive clients did not reject invalid cookies and that
over 80% of clients did not discard responses that were missing a cookie when
one should have been present (as demonstrated to the client in a previous query).
This means that a majority of recursive clients may still be susceptible to cache
poisoning attacks because a response without EDNS or a DNS COOKIE option is
accepted as easily as a legitimate response with a valid client cookie.

Responses with BADCOOKIE Rcode Two of our conditions tested how
a recursive resolver responds to a BADCOOKIE rcode. In one condition we still
included the answer, but in the other, we did not. This imitates an authoritative
server strictly requiring cookies (though a correctly behaving serving would pro-
vide a valid server cookie and accept it in future queries). For these conditions,
we consider all 528,832 servers who successfully answered the normal condition
regardless of cookie use.

For the bad queries, 301,929 (57%) of IPs timed out and 206,577 (39%)
returned an rcode of SERVFAIL. We observed similar values for bad-answer:
272,041 (51%) timed out and 236,401 (45%) returned SERVFAIL. We did observe
an extra effort by recursive resolvers receiving either a bad or a bad-answer
response to get a valid response. More than half of IP addresses issued at least
19 queries in connection with either of these responses—as opposed to a me-
dian of 1 for normal queries. Interestingly, 17,921 (3.4%) of recursive resolvers

5 We did not rerun the initial collection as the process is resource intensive and takes
multiple days. We are also less interested in servers lost due to churn as they are
unlikely to be true open resolvers as opposed to misconfigurations.



that responded to our bad-answer query returned to us the answer that our
servers had given to them, despite the BADCOOKIE rcode in the response from
our authoritative servers. Of those that returned an answer, 14,350 (80%) also
set the rcode to SERVFAIL. The lack of enforcement is accompanied by a lack of
consensus on how unexpected responses should be handled.

5.2 Server Handling of Unexpected Client Behavior

Here we performed a short test to determine how DNS servers would respond to
unexpected client behavior, with regard to the server cookie sent by the client.
Specifically, we had our client send 5 queries that included the most recently
received server cookie, 5 queries without a server cookie, and 5 queries with
a fake server cookie. In each of these conditions, the client cookie was sent as
normal. In the latter two cases, the specification provides three options for a
server [11]. They may silently discard the request, respond with the BADCOOKIE

error code, or respond normally as if no cookie option was present. We sent these
queries to all Alexa IPs, TLD IPs, and recursive resolver IPs identified in section
3.1 that supported cookies.

For Alexa servers, we observed 41,083 IPs that responded to at least one
normal query with a valid response and rcode of NOERROR. In our two other
scenarios, nearly all of these IPs also had one or more standard responses: >99%
for queries without cookies and with fake cookies. We observed 1 IP that used
the BADCOOKIE rcode even when we sent the most recently received server cookie.
We saw only 28 IPs use BADCOOKIE when we didn’t send a cookie and 27 IPs
when we sent a fake cookie.

For TLD servers, we initially observed 1,246 IPs that responded to at least
one normal query with an rcode of NOERROR. All but 3 IPs returned an rcode
of NOERROR in both the fake and missing cookie scenarios. These 3 IPs con-
sistently returned an rcode of BADCOOKIE under these conditions, and all were
authoritative for the il (Israel) TLD.

For recursive resolvers, we saw 137,896 IPs return an rcode of NXDOMAIN (we
queried for a non-existent domain) for a normal query. Again we saw over 99%
continue to behave normally when the server cookie was missing or fake. We
measured 49 servers using BADCOOKIE for a missing cookie and 53 for a fake
cookie (though 13 IPs sent BADCOOKIE incorrectly in the normal condition).

In summary, practically no server changes its behavior if it doesn’t receive
a server cookie or if it receives a fake one (even after the client previously sent
valid cookies). While this behavior is consistent with the specification, it is the
least restrictive approach. As a result, these servers can still potentially be used
in reflection attacks because they will generate a full response regardless of the
server cookie.

6 Discussion

We have now enumerated support for DNS Cookies and found that it is limited,
both for clients and servers. We have also seen that few clients and servers



supporting cookies enforce them. This begs the question of what contribution, if
any, DNS Cookies currently make. DNS Cookies are also in a difficult situation
because they require wide deployment for enforcement to be enabled, but there
may be little value in adopting them today. We now discuss the perceived current
benefits of cookies and the path forward to wider adoption and enforcement.

6.1 Cookie Benefits Today

DNS Cookies have minimal value in their current state. We found that cookies
are used by less than 30% of servers and 10% of recursive clients. This alone
means that 70% of servers can be abused for reflection attacks and 90% of
clients are not strongly protected from cache poisoning attacks (though other
measures exist). Also noteworthy is the fact that 90% of clients are not sending
server cookies (as a client cookie is a prerequisite).

Due to relatively low adoption rates, those that do support cookies are unable
to enforce them since doing so would break compatibility with the majority
of infrastructure. In our testing, we demonstrated our support for cookies in
preliminary queries but still observed that only 20% of clients and less than 1%
of servers changed their behavior if a cookie was missing or fake.

The only benefit we see today is that receiving a valid cookie acts as a
reassurance that the other party’s identity is correct. In real-world applications,
this reassurance provides little value since it does not change an implementation’s
behavior: it would accept the message regardless of a cookie.

In summary, we do not see any benefits from DNS cookies, as they are used
today. Cookies exist mostly in a dormant state, but if adoption significantly
improves such that they can be enforced, they can become effective.

6.2 Path Forward for Cookies

The obvious next step for cookies is to increase adoption among clients and
servers. However, there is somewhat little benefit to doing so today due to the
lack of enforcement. Additionally, servers may not be concerned with identifica-
tion (as they’re only a passive entity in reflection attacks) and clients may feel
protected from cache poisoning through other measures.

To incentivize adoption, strategies for partial enforcement should be explored.
For example, clients and servers could begin enforcing cookies use for parties
they previously observe using cookies. In our testing, we saw that 80% of clients
and 99% of servers did not do this. Another enforcement implementation could
involve a mechanism to advertise cookie support. This would allow other parties
to verify that an IP intends to use cookies and then apply strict enforcement
on a case-by-case basis. Neither of these enforcement strategies will overcome
the lack of cookie adoption because enforcement can only ever be applied to the
small percentage of clients and servers supporting cookies.

As a result, the main step for cookies is to continue to grow adoption num-
bers. As adoption grows, opportunistic or learned enforcement will become more



viable. Given the entrenchment of the DNS in internet infrastructure, it is un-
likely that adoption will ever be universal, and as a result, strict enforcement
may never be possible. Here we hope that strategic enforcement can be sufficient
enough to deploy as a permanent strategy.

7 Ethical Considerations

All measurements and analyses performed in this paper were designed to be
benign. Queries were sent at a low frequency, typically one per second, and never
exceeded a volume of more than 20 queries per minute to a given IP address.
Additionally, our probes were used solely to measure cookie usage and support.
None of our probes were designed to exploit clients or servers.

8 Conclusion

In this paper, we present what is, to our knowledge, the first study of DNS
Cookie usage. We find that cookie usage is limited, despite its standardization
four years ago. We find that under 30% of IPs for the top 1 million Alexa domains
and less than 20% of IPs for the TLDs supported cookies. We also observe that
17% of recursive resolvers support cookies as a “server”, but only 9% do as a
“client”. We next analyzed a collection of server cookies and exposed potential
issues, such as inconsistent clocks, which could potentially cause issues if cookies
were enforced.

Finally, we experimented to see if any clients or servers enforced cookie usage.
We observe that only 20% of clients and less than 1% of servers behave differently
if an IP that previously supported cookies does not supply a cookie or replies
with a fake cookie. This highlights that even those supporting cookies are not
seeing any significant protection.

Overall, DNS Cookie adoption is limited, and there are few benefits for those
using cookies. For cookies to leave their dormant state, higher adoption rates
are necessary. From there, we believe that strategic enforcement may begin to
produce real-world benefits.
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