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Abstract—Caching has been a fundamental feature of the
Domain Name System (DNS) since its inception. Resolvers cache
the response to a query – whether that response was a name-
to-resource mapping or a code indicating that no mapping
exists. Recent additions to the DNS include a behavior known
as aggressive negative caching, wherein resolvers simply infer
that no mapping exists, based on previous responses, thus saving
a query to authoritative servers. In this paper we perform
the first known study of aggressive negative caching in the
wild. We issue experimental queries to resolvers associated with
2,500 world-wide RIPE Atlas probe to detect the behavior
in real resolvers. We observe aggressive negative caching in
roughly half of the resolvers we analyzed. We also perform an
analysis of several open source DNS resolver implementations,
which show both that behaviors differ between implementations
and that implementations are often consistent with their own
documentation.

I. INTRODUCTION

The Domain Name System (DNS) is the set of protocols,
servers, and software that provide the critical name-to-address
mapping for the Internet. Since its inception over 40 years
ago, the DNS has undergone many changes, each of which has
affected the Internet ecosystem in some way. Many changes
have been about improving security and privacy; others have
been about increasing efficiency. One change that was driven
by both is aggressive negative caching.

Caching DNS responses has been an integral part of the
DNS since its design. A DNS resolver saves records that it
has retrieved from authoritative servers, until they expire. This
includes negative responses—i.e., those that indicate that a
name has no mapping. Aggressive negative caching is a similar
idea, but the negative responses are inferred from previously
cached information, rather than explicitly learned through
DNS queries. For example, a DNS resolver might learn
through its queries to other DNS servers that names alphabet-
ically between a.example.com and d.example.com do
not have mappings; when queried later for b.example.com,
it might elect to issue an NXDOMAIN (name not found) error
directly rather than explicitly querying to find the answer. This
is aggressive negative caching.
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Aggressive negative caching has been shown to significantly
reduce the quantity of queries for nonexistent domain names
between DNS resolver and DNS authoritative server [1]. This
is especially true at the root and top-level domain levels be-
cause of the large fraction of queries destined for those servers
that are for nonexistent domain names [2]. This reduction in
queries between resolvers and authoritative servers is certainly
an improvement in efficiency. However, it also enhances orga-
nizational privacy because authoritative servers (third parties)
observe fewer queries issued by resolvers (organizations).

While this behavior is generally seen as an improvement, it
is not without consequence. For example, many researchers in
the Internet community rely on datasets such as Day in the Life
of the Internet (DITL), which is an annual collection of DNS
queries at the DNS root servers, over a 48-hour period [3]. The
absence of a large number of queries for nonexistent domains
could prove to be a significant gap in analyses of DITL data,
depending on their purposes. Knowing the prevalence of DNS
resolvers that exhibit this behavior is important for better
understanding the DNS and Internet ecosystem, including the
value of datasets like DITL.

In this paper we measure the presence of aggressive negative
caching behaviors in various locations around the Internet. Us-
ing a collection of globally distributed RIPE Atlas probes, we
issue queries against a carefully designed DNS infrastructure
and analyze the results. The major contributions of this paper
are the following:

• A novel methodology for detecting aggressive negative
caching;

• An Internet-wide measurement of aggressive negative
caching behavior; and

• A study of aggressive negative caching behavior in vari-
ous open-source DNS resolver implementations.

We find that roughly half of the resolvers we analyze exhibit
behaviors consistent with aggressive negative caching, includ-
ing some public DNS resolver services. We also observe a
variety of implementation behaviors, which both distinguish
one implementation from another and put an implementation
at odds with its documented features; in nearly every case, the
observed behaviors for an implementation do not align with
its documentation.
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II. BACKGROUND

The DNS [4], [5] involves three main components of in-
frastructure: stub resolver, recursive resolver, and authoritative
server. The stub resolver exists as a software library on an end-
user system. It issues queries to a recursive resolver, which
either answers from its cache or finds the answer by querying
one or more authoritative servers. The authoritative servers
hold databases mapping domain names (e.g., foo.com) and
types to resources: type A for a IPv4 address, type AAAA for
an IPv6 address, type MX for mail exchange records, etc. This
database is referred to as a DNS zone.

All DNS queries consist of a domain name and a type.
DNS responses likewise include the queried domain name
and type, as well as a response code that is typically one
of the following: NOERROR (name exists); NXDOMAIN (name
does not exist); SERVFAIL or FORMERR (server encountered
an error while processing the query). Finally, if there is a
resource corresponding to the queried name and type, then it
is returned in the answer section of the response. An empty
answer section constitutes a negative response. Both answers
and negative responses can be cached by a recursive resolver.
The maximum time that an answer or negative response can
be cached is specified in a time-to-live (TTL) value returned
in the response.

The DNS Security Extensions (DNSSEC) [6], [7], [8]
provide origin authentication to the DNS. With DNSSEC,
responses include cryptographic information with which a
resolver can validate their validity. A more detailed analysis
of DNSSEC can be found in other works. However, a com-
ponent of DNSSEC that is especially relevant to this work is
authenticated denial of existence. When a negative response
is issued, the response contains a set of NSEC (next secure)
records that indicate the name(s) that exist, on either side of the
queried name (based on a specified canonical ordering), which
does not exist. These records constitute the nonexistence proof
for the queried name. NSEC3 records are similar but instead
of providing a plain-text proof, they contain the hashes of
existing names; these hashes are on either side of the hash of
the queried name (based on a specified canonical ordering),
which does not exist.

In the case of both NSEC and NSEC3, the nonexistence
proofs that accompany negative responses typically provide
enough evidence for the nonexistence of other names to be
inferred as well. For example, if a server returns the proof
that there is nothing between a.foo.com and d.foo.com,
in response to a query for b.foo.com, it can infer that
c.foo.com is also nonexistent. This inference was initially
prohibited by DNSSEC specification [8]. However, that re-
striction was lifted in an updated specification [9].

We note that some authoritative DNS servers implement
minimal NSEC or NSEC3 proofs, referred to as “black lies”
and “white lies”, respectively [10], [11]. In these cases, rather
than returning NSEC or NSEC3 records that correspond to
domain names that actually exist, NSEC or NSEC3 records
are synthesized on demand to minimally “cover” the queried

domain (NSEC) or its hash (NSEC3). In both of these cases,
the proofs returned from authoritative servers resolver are so
minimal that they cannot be used for inferring nonexistence
of any other domain names.

III. PREVIOUS WORK

Both DNSSEC signing and DNSSEC validation have been
studied since the early days of DNSSEC deployment. Os-
terweil, et al., were among the pioneers in this area, mea-
suring the adoption of DNSSEC deployment during its early
years [12]. Later DNSSEC measurement studies focused on
the quality and analysis of deployment, with an attempt to
understand not only the adoption rate but also the reasons
for its slow uptake [13], [14], [15]. Measurement studies
associated with DNSSEC validation have also been carried
out [16], [17]. In this paper, we measure the pervasiveness of
DNSSEC validation, but mostly in conjunction with our study
of resolver and aggressive negative caching.

DNS negative caching was the subject of a 2019 study, in
which the resolvers of more than 7,000 RIPE Atlas probes
were analyzed to see if they cached a negative response [18]. A
more recent (2024) study included not only traditional negative
caching (NXDOMAIN and NODATA), but also different server
behaviors, such as other response codes (e.g., FORMERR) and
other response contents (e.g., no SOA record in the authority
section) [19]. There is some overlap between these previous
studies and this paper. Negative caching is studied in this
paper, but it is only incidental to aggressive negative caching,
which is the primary focus of this paper.

Very little work has been done in studying NSEC, NSEC3,
and aggressive negative caching. While not a study of aggres-
sive negative caching, Demke, et al., studied the deployment of
NSEC and NSEC3 in DNSSEC-signed zones, including black
lies and white lies—from which no aggressive caching could
take place [20]. The only study of aggressive negative caching
of which we are aware was presented as a “lightning talk” by
Huston, et al., in 2019 [21].

One of the byproducts of aggressive negative caching is
additional organizational privacy; only a fraction of the queries
resulting in negative responses issued to an organization’s
resolver are also seen by the authoritative servers. Query name
(QNAME) minimization is another DNS extension that also
results in reduced data shared with authoritative servers. While
surveys of aggressive negative caching have not been found
in academic forums, several studies of QNAME minimization
have been carried out in recent years [22], [23], [24].

IV. MEASUREMENT METHODOLOGY

Our basic methodology for determining whether or not a
given resolver implements aggressive negative caching is the
following:

1) Create a DNSSEC-signed zone with a single, large gap
between names within the zone.

2) Issue queries to the DNS resolver for unique, nonexistent
query names within the single large gap in the zone.
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Fig. 1: Different resolver behaviors associated with negative
caching. Scenario (a) illustrates traditional negative caching.
Scenarios (b) through (d) illustrate aggressive negative caching
with a simple cache, complex cache, and shared cache, respec-
tively.

3) Correlate authoritative DNS queries—or lack thereof—
with the recursive queries issued.

In the case that a resolver implements aggressive negative
caching, we expect the authoritative servers to see queries for
fewer query names than the number of NXDOMAIN responses
than the client receives from the recursive resolver. This is il-
lustrated in Figure 1, with scenario (a) representing traditional
caching and scenarios (b) through (d) representing different
variants of aggressive negative caching. These scenarios are
further explained in Section V.

In the rest of this section we describe the set of resolvers
that we selected for analysis as well as the DNS zones and
queries used to detect negative caching behavior.

A. Resolver Selection

We used RIPE Atlas probes to analyze DNS resolvers
deployed around the world. We selected 2,500 probes using the
“Random by Area” option, and specifying the “WW (World-
Wide)” area. We further specified that each probe should issue
queries to each of its configured DNS resolvers. While there
are several datasets from which we might have chosen our
resolvers, we used RIPE Atlas because it provides DNS query
access to resolvers in a diversity of geographic and network
locations, including both public and non-public DNS resolvers.

In all, 3,940 unique probe-resolver pairs were identified for
analysis. With those probe-resolver pairs, 132 countries and
1,264 autonomous system numbers (ASNs) were represented.
The mean and median probe-resolver pairs per country were
38 and 35, respectively. The mean and median probe-resolver
pairs per ASN were 160 and 118, respectively. The top 15
represented countries and ASNs are shown in Figure 2. The
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Fig. 2: Distribution of probe-resolver pairs in (a) the top 15
countries and (b) the top 15 ASNs.

United States is the most represented, followed by Germany
and France. The most represented ASNs correspond to Internet
service providers Verizon (AS 701), Comcast (AS 7922),
Vodaphone (AS 3209), and AT&T (AS 7018).

While there are 3,940 unique probe-resolver pairs, the
number of actual resolvers is fewer because there is some
resolver redundancy. In some cases a single probe might be
configured with multiple IP addresses that actually reference
the same recursive resolver. For example, they might use
192.0.2.1 and 2001:db8::1, which could correspond to
the IPv4 and IPv6 address of a single resolver. It could also
be that a given resolver is used by multiple probes. In these
cases, if aggressive negative caching is employed, it is possible
that we observe no queries at our authoritative servers for a
given probe-resolver pair, i.e., because the shared resolver has
the nonexistence proof cached before the “first” query from
that pair. In any case, this study is to provide some basis for
measuring aggressive negative caching, even if the dataset has
limitations.

Of the 3,940 probe-resolver pairs, about one third (1,292
or 33%) are associated with three well-known public DNS
resolver services by their primary IPv4 or IPv6 addresses:
Cloudflare (374 or 9%); Google (640 or 16%); and Quad9
(278 or 7%). The infrastructure for these resolver services is
more complex, such that a resolver that employs aggressive
negative caching might generate a set of queries representing
less than 100% of the query names, instead of just a single
query. In this case, sending multiple queries increases the
chances of hitting an intermediate cache with the nonexistence



DNSSEC NSEC DNSSEC Per-Query False
Zone Algorithm Type Status Positive Rate

NSEC-S 8 NSEC secure 0.0
NSEC-I 8 NSEC insecure 0.0

NSEC3-S 8 NSEC3 secure 9.3× 10−10

NSEC3-I 8 NSEC3 insecure 9.3× 10−10

BROKEN 8 N/A bogus N/A

TABLE I: Summary of characteristics of DNS zones used for
testing aggressive negative caching.

proof. Ultimately, however, the results is based on the number
of backend caches. There might be false negatives if no two
queries are forwarded to the same backend cache. However,
the chance for false positives is much smaller because it would
effectively be caused by only by authoritative queries that were
not logged due to packet loss.

B. Experimental DNS Zones

In this section we describe the DNS zones used for issuing
queries to detect aggressive negative caching. Section IV
implies a single DNS zone for which queries would be
issued. However, we actually create multiple zones, which
can collectively help us expand our understanding beyond just
the base question of whether or not a resolver implements
aggressive negative caching. For example, we would like to
know whether a resolver supports aggressive negative caching
with NSEC, NSEC3, or both, and whether a resolver carries
out aggressive negative caching without DNSSEC validation
or without a valid chain of trust (i.e., contrary to specification).

We now describe the purpose and configuration of the five
DNS zones we created. A summary is found in Table I.

NSEC-S. Our baseline zone, NSEC-S, is DNSSEC-signed
using NSEC. Also, there is a complete chain of trust, such
that the negative responses can be fully authenticated by a
DNSSEC-validating resolver, for a status of “secure” [8]. The
NSEC-S zone includes only two names: the zone name itself
(foo.com); and a domain name that closely follows the
zone name in canonical ordering (\007.foo.com, where
\007 is a byte with value 7) [7]. A query for effectively
any proper subdomain of the zone name (e.g., a.foo.com,
b.foo.com) results in an NXDOMAIN response. The NSEC
record returned in response to any such query indicates that
there are no names between \007.foo.com and foo.com.
That record alone is proof enough for any resolver that uses
aggressive negative caching to infer an NXDOMAIN response
to further queries for proper subdomains of foo.com, without
re-querying the NSEC-S authoritative servers. We make two
notes about the use of \007 as the first label of the name.
First, this is a nod to Cloudflare’s black lies for minimally-
sized nonexistence proofs [11], even though this is used for
the exact opposite purpose—to create the largest gap in names
possible. Second, we originally used \000, to create the
maximum possible gap. However, we found that one resolver
implementation—Knot Resolver—did not perform aggressive
negative caching with the \000 label, possibly because treat-
ing it differently “improves cache effectivity with DNSSEC

black lies” [25]—even though our configuration is the very
opposite of black lies, with the \000 being associated with
the owner name of the NSEC record, instead of the Next
Domain Name field.

NSEC-I. The second DNS zone, NSEC-I, is configured
identically to NSEC-S, except that there is no full DNSSEC
chain of trust. This means that responses cannot be fully
authenticated by a DNSSEC-validating resolver, which is a
requirement for aggressive negative caching [9]. Queries to
this zone are for determining whether or not implementers are
following this requirement, in accordance with specification.

NSEC3-S. The third DNS zone, NSEC3-S, is DNSSEC-
signed and has a complete chain of trust, like NSEC-I.
However, it uses NSEC3 instead of NSEC. In order to get
the large gap in names, as we did for NSEC-S (and NSEC-
I), we used millions of loop iterations to generate a domain
name whose hash was relatively close to the hash of the zone
name. In this case, the hash does not immediately follow the
hash of the zone name, as is the case with NSEC-S; with
an off-the-shelf authoritative DNS server implementation like
the one we used in our experiment, such would have been
basically impossible. However, we quantifiably minimized the
gap between the two hashes using the following logic. The
hash associated with an NSEC3 record is 1,024 bits, so the
hash space is 21024. The “difference” between the hash of the
generated name and the hash of the zone name covers all but
9.3 × 10−10 of the hash space. This means that, on average,
roughly 1 in a billion queries are likely to fall outside of that
range and thus not be “covered” by that NSEC3 record. For
our experiment, that figure becomes our false positive rate for
an individual query. However, as we describe in Section IV,
multiple queries are issued to test a given resolver, and the
false positive rate further decreases when multiple queries are
issued. The NSEC3-S zone is used to see if a given resolver
behaves differently with NSEC3 vs. NSEC records, as far as
aggressive negative caching is concerned.

NSEC3-I. The fourth DNS zone, NSEC3-I, is configured
identically to NSEC3-S, with the exception that there is no
full DNSSEC chain of trust. This is the equivalent of NSEC-
I, but for NSEC3.

BROKEN. The final DNS zone, BROKEN, is DNSSEC-
signed. It also uses NSEC, but the use of NSEC and NSEC3
is irrelevant for this zone; its purpose is not to infer the
use of aggressive negative caching but to infer whether or
not a resolver is performing DNSSEC validation. The chain
of trust for this zone is deliberately broken, such that any
responses from a DNSSEC-validating resolver should have
response code SERVFAIL because of a validation status of
“bogus” [8].

All zones are signed with DNSSEC algorithm 8 (RSA-
SHA1-NSEC3), as are the zones in their chain of trust,
including the top-level domain (TLD) and the root zone. We
used algorithm 8 because it provides the best likelihood that it
is supported by resolvers for validation, which is a minimum
requirement for aggressive negative caching. Resolvers might
not support all currently deployed algorithms, but any resolver



that wants to anchor with the root zone keys must support
algorithm 8. The negative response TTL for all zones is four
hours.

C. DNS Queries

To test each probe-resolver pair for behaviors indicative of
aggressive negative caching, we issue it a total of 37 queries,
consisting of the following:

• Aggressive Negative Cache Queries. a sequence of 8
queries, each for a unique, nonexistent query name within
each of the NSEC-S, NSEC-I, NSEC3-S, and NSEC3-I
zones; and

• DNSSEC Queries. 5 queries, each for a unique, nonex-
istent query name within the BROKEN zone.

Queries within each zone were spaced 1-minute apart, which
is the smallest interval allowed by RIPE Atlas. The sequences
of queries to each of the zones were issued in parallel; that
is, the queries for NSEC-S, NSEC-I, NSEC3-S, NSEC3-I, and
BROKEN were all issued during the same time period.

The query name for each query was a proper subdomain
of one of our experimental zones, i.e., by adding a single
label to the left of the zone name. To ensure uniqueness of
the query names across probes and resolvers, this left-most
label follows convention $t-$p-experimentid, where $t
is the current timestamp, $p is the identifier of the probe
issuing the query, and experimentid is a unique identifier
associated with this set of measurements. A resolver without
aggressive negative caching would be expected to forward
every query to the authoritative servers, which are under our
control (i.e., the traditional negative caching behavior (a) in
Figure 1). In contrast, a resolver that practices aggressive
negative caching would be expected to forward only the first
query to the authoritative servers, after which the nonexistence
of subsequent queries would be inferred from the NSEC or
NSEC3 (i.e., one of the aggressive negative caching behaviors
(b) through (d) in Figure 1). In either case, we would see
evidence of this in our logs.

We note that adding only a single label to the zone name to
create the query name is important because recent protocol
clarifications specify that the nonexistence of subdomains
(e.g., c.b.a.foo.com) can be inferred from the nonexis-
tence of their superdomains (e.g., a.foo.com), even without
the use of aggressive negative caching [26]. Adding only a
single label helps us avoid false positives.

V. MEASUREMENT RESULTS

We now analyze the results of our measurement study.
Because the probes did not receive or report a response
for every recursive query issued, we only considered the
measurement result for a given probe-resolver pair if the probe
received at 8 NXDOMAIN responses from the resolver. Of
all probe-resolver pairs, 3,617 (92%) qualified in the NSEC-
S experiment and 2,998 (76%) qualified in the NSEC3-S
experiment. The total qualifying resolvers in at least one of
the experiments was 3,653, corresponding to the 93% of the

Unique Probe-Resolver Pairs
Description NSEC-S NSEC3-S All
Total 3,934 3,924 3,940
8 NXD Responses for either 3,617 2,998 3,653
NSEC-S or NSEC3-S (92%) (76%) (93%)

Traditional Neg. Caching 1,827 2,894 3,227
(51%) (97%) (88%)

Aggressive Neg. Caching 1,790 104 1,793
(49%) (3.5%) (49%)

Simple cache 489 (27%) 5 (4.8%) 491 (27%)
Complex cache 616 (34%) 96 (92%) 702 (39%)
Shared Cache 685 (38%) 3 (2.9%) 685 (38%)
No DNSSEC Validation 0 (0%) 0 (0%) 0 (0%)
No chain of trust 0 (0%) 0 (0%) 0 (0%)

8 NXD Responses for both 2,962 (75%)
NSEC-S and NSEC-3

Aggressive Neg. Caching 1,468 101 1,468
(50%) (3.4%) (50%)

NSEC-S only 1,367 (93%) N/A N/A
NSEC3-S only N/A 0 N/A

TABLE II: Results of empirical analysis of resolvers associ-
ated with RIPE Atlas probes. Percentages shown are in relation
to the bold heading most closely above and less indented than
the percentage. Because the “All” column is a union of the
results in the “NSEC-S” and “NSEC3-S” columns, the sum of
the subcomponents of the “All” column can exceed 100%.
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Fig. 3: Cumulative distribution of the number of unique query
names in queries observed at authoritative servers, for queries
issued to NSEC-S and NSEC-I zones.

total. This is summarized along with other results in Table II.

We analyzed the number of unique query names observed in
queries at the authoritative servers, on a per-DNS-zone basis.
A plot showing the cumulative distribution of unique names
observed for NSEC-S and NSEC3-S is shown in Figure 3. The
plot and table both show that about 49% of probe-resolver
pairs exhibited behavior consistent with aggressive negative
caching with NSEC-S—i.e., the query names for fewer than
8 queries were observed at our authoritative servers. Fewer
than 5% of probe-resolver pairs exhibited behavior matching
the pattern of aggressive negative caching with NSEC3-S. We
investigate this disparity further between NSEC-S and NSEC3-
S further in Section VI.

We consider three different specific patterns that we attribute
to aggressive negative caching, illustrated in Figure 1, as
scenarios (b), (c), and (d), respectively:

• Simple cache. Only the first of the queries resulting in



Description Probe-Resolver Pairs
Total 3,940
5 SERVFAIL or NXDOMAIN Responses 3,741 (95%)

All SERVFAIL Responses 2,731 (73%)
All NXDOMAIN Responses 959 (26%)
Mix of SERVFAIL and NXDOMAIN 51 (1.4%)
Responses

TABLE III: Results of empirical DNSSEC validation testing
of resolvers associated with RIPE Atlas probes. Percentages
shown are in relation to the bold heading most closely above
and less indented than the percentage.

NXDOMAIN responses were observed at the authoritative
servers.

• Complex cache. At least one of the queries resulting in
NXDOMAIN responses were observed at the authoritative
servers. This excludes the behavior of the “simple cache”,
i.e., that only authoritative query associated with the first
NXDOMAIN response was observed.

• Shared cache. No queries were observed at the authori-
tative servers.

Of the probe-resolver pairs exhibiting aggressive negative
caching with NSEC-S, just over one quarter (27%) fit the
pattern of simple cache—i.e., only a single query name was
observed at the authoritative servers. The other 73% were
resolvers with complex caches and shared caches. For NSEC3-
S, 95% of probe-resolver pairs performing aggressive negative
caching were complex and shared caches.

We also looked for some behaviors that are inconsistent
with the specification for aggressive negative caching. We
found no examples of aggressive negative caching with NSEC-
I or NSEC3-I—i.e., with no chain of trust. Neither did we
find examples of resolvers that employed aggressive negative
caching without DNSSEC validation, which would have been
manifested by NXDOMAIN (instead of SERVFAIL) responses
to queries in the BROKEN zone.

We observed that 73% of probe-resolver pairs appear
to support DNSSEC validation, as evidenced by consistent
SERVFAIL responses after a query to our BROKEN zone.
Another 26% of probe-resolver pairs returned consistent
NXDOMAIN responses, an indicator that they do not support
DNSSEC validation. The remaining 1.4% returned a mixture
of SERVFAIL and NXDOMAIN, the inconsistency of which
might again be the result of multiple backends that are
configured differently as far as validation is concerned. This
is summarized in Table III.

VI. RESOLVER BEHAVIOR CHARACTERIZATION

Having studied behaviors of Internet resolvers, we now
examine the behaviors of individual implementations, for a
comparison. Several open-source implementations have im-
plemented aggressive negative caching since 2018, including
BIND (since version 9.12.0), Unbound (since version 1.7.0),
Knot Resolver (since version 2.0.0), and PowerDNS Recursor
(since version 4.5.1). Table IV contains a summary of major

DNS resolver implementations and their adoption of aggres-
sive negative caching, according to their own documentation.

Notably, the addition of this feature has been far from all-
or-none. The history of aggressive negative caching in each
of the open source implementations, according to their own
documentation, is as follows. BIND originally implemented
aggressive negative caching for both NSEC and NSEC3 in
2018 and made it the default configuration [27]. However,
in 2019, it was disabled by default due to it having “a
significant performance impact” [31]. In 2021, aggressive
negative caching was restored as the default behavior in
BIND, but only support for NSEC was included [34]. Unbound
implemented aggressive negative caching in 2018 but did not
make it the default behavior until 2022 [28], [32]. Finally, Knot
Resolver first implemented aggressive negative caching for
only NSEC and later added functionality for NSEC3 [29], [33].
Only PowerDNS Recursor has supported aggressive negative
caching for both NSEC and NSEC3 continuously, by default,
since it was initially introduced.

Using the documentation as a starting point, we test each
of the open-source implementations for aggressive negative
caching behavior. We also test the behavior of three major
public DNS providers: Cloudflare, Google, and Quad9. The
rest of this section describes our methodology and findings.

A. Methodology

For each DNS resolver software implementation, we se-
lected the latest minor version in each major version, begin-
ning with versions that implement aggressive negative caching
as default behavior and ending with the most recent release:

• BIND 9.17.22, 9.18.35, 9.19.24, 9.20.7, 9.21.6
• Unbound 1.17.1, 1.18.0, 1.19.3, 1.20.0, 1.21.1, 1.22.0
• Knot Resolver 3.2.1, 4.0.0, 4.1.0, 4.2.2, 4.3.0, 5.0.1, 5.1.3,

5.2.1, 5.3.2, 5.4.4, 5.5.3, 5.6.0, 5.7.4
• PowerDNS Recursor 4.5.12, 4.6.6, 4.7.6, 4.8.4, 4.9.9,

5.0.9, 5.1.3, 5.2.0
For Unbound, Knot Resolver, and PowerDNS Recursor, we
deployed each software version in its own Docker container.
For BIND, we compiled each version from source. Each
resolver was configured to perform DNSSEC validation and
aggressive negative caching. We also issued tests to several
major public DNS resolver services, each from two different
vantage points, one near Salt Lake City and one near San
Francisco, both in the United States: Cloudflare (1.1.1.1),
Google (8.8.8.8), and Quad9 (9.9.9.9).

For each software version and each public DNS vendor we
issued the following queries, with reference to Section IV-B:

Aggressive Negative Cache Queries. 100 queries (200 for
public DNS services), each for a unique query name, within
each of the NSEC-S, NSEC-I, NSEC3-S, and NSEC3-I zones.
This amounts to 400 queries (800 for public DNS services).

DNSSEC Queries. 5 queries to the BROKEN zone. If the
resolver is configured to perform DNSSEC validation, then
these will result in SERVFAIL responses.



BIND Unbound Knot Resolver PowerDNS Recursor
config. option synth-from-dnssec aggressive-nsec (None) aggressive-nsec-

cache-size
Version (year) NSEC/3 Version (year) NSEC/3 Version (year) NSEC/3 Version (year) NSEC/3

documented 9.12.0 (2018 [27]) 1.7.0 (2018 [28]) 2.0.0 (2018 [29]) 4.5.1 (2021 [30])
features 9.15.6 (2019 [31]) 1.15.0 (2022 [32]) 2.4.0 (2018 [33])

9.17.21 (2021 [34])

TABLE IV: A summary of aggressive negative caching implementation in open-source DNS resolver software, according to
their documentation. Support for both NSEC and/or NSEC3 is shown as follows:

not implemented; implemented but not default behavior; implemented and enabled by default.

Negative Cache Queries. 100 queries (200 for public DNS
services) for each of five unique query names, within each of
the NSEC-S, NSEC-I, NSEC3-S, and NSEC3-I zones. This
amounts to 2000 queries (4000 for public DNS services).
While basic negative caching has been a feature of the DNS
from the very beginning, we issued these tests to check for
behavioral differences across the different software versions,
particularly when NSEC or NSEC3 are used in the DNS
zones. The expectation is that each of the unique query names
results in only a single query at our authoritative servers—
or 0 queries, if its nonexistence could be inferred without
even a single query, with the help of aggressive negative
caching. For more complex caches, like those employed in
public DNS services, we might expect to observe more than
a single query at our authoritative servers because the 200
queries were distributed across multiple backend caches.

B. Results

In our analysis of the open-source resolver implementations,
we saw only three behaviors associated with aggressive neg-
ative caching: only a single unique query name is observed
in authoritative queries (i.e., scenario (b) in Figure 1), all
query names are observed (i.e., scenario (a) in Figure 1), and
about 60% of query names are observed. The first two cases
are straight-forward examples of aggressive negative caching
and traditional negative caching; the latter is the aggressive
negative caching behavior specific to Knot Resolver, and we
explain it subsequently.

With the public DNS services, we saw the following pat-
terns: all query names observed or between 1 and 10% of
query names observed. We attribute the range (1–10%) to the
cache complexity of the public DNS services; multiple queries
to a given front-end will not necessarily be routed to the same
backend cache. Thus, even with aggressive negative caching, a
second query to the front-end does not always result in induced
nonexistence. However, the percentage for services providing
aggressive negative caching is clearly distinguishable.

The full results of our experimentation are shown in Ta-
ble V. Every row represents the observed behavior of a given
set of resolver implementations, specified by the “Software”
and “Version” columns. The rows are unique, with one
exception: the rows representing the observed behaviors of
PowerDNS Recursor 4.9.9 through 5.20 are identical to those
of BIND 9.17.22 through 9.18.35.

One of the biggest observations from our experimentation
is that none of the software implementations exhibit the
negative caching behavior described in its documentation. The
documentation for every implementation we tested indicates
support for aggressive negative caching with NSEC. Based on
our analysis, such support was detected in all implementations,
with the exception of BIND 9.19.24 and later—even though
previous versions of BIND supported it. Similarly, we antici-
pated aggressive negative caching behavior with NSEC3 for all
Unbound, Knot Resolver, and PowerDNS Recursor versions,
based on their documentation. Yet none of the Unbound
versions we tested appeared to support this feature. PowerDNS
supported aggressive negative caching with NSEC3 in versions
through 4.8.4, but it was not observed in 4.9.9 and beyond.

Knot Resolver supports aggressive negative caching with
NSEC3 in all versions, but with some caveats. For roughly
60% of query names issued to a DNS zone signed with
NSEC3, Knot Resolver made no attempt at aggressive negative
caching—or even normal negative caching. For the remaining
(approximately) 40% of query names, aggressive negative
caching and normal negative caching worked as expected
for the DNS zones signed with NSEC3. Whether negative
caching and aggressive negative caching is carried out by Knot
Resolver for NSEC3 is consistent for a given query name. That
is, a given name was found to always support negative caching
(aggressive or not) or never support it. This leads us to believe
that the decision is based on the hash of a query name.

In our testing of public DNS resolver services, we observed
that Google and Quad9 both supported aggressive negative
caching with NSEC (only), while Cloudflare had no apparent
support for aggressive negative caching with either NSEC
or NSEC3. These behaviors were consistent across the two
vantage points from which we queried.

We now consider the number of queries issued to author-
itative servers in conjunction with a negative response. We
calculated the average number of queries observed at our
authoritative servers per query name sent to the server. For
example, if 600 queries were observed at our authoritative
servers for 100 domain names, then the average would be 6.
With the exception of Unbound versions 1.17.1 through 1.18.0,
all resolver implementations, including public DNS services,
issue only a single query to authoritative servers when the
zone is signed with NSEC, whether NSEC-S or NSEC-I. With
NSEC3 zones, the average number of authoritative queries
associated with a negative response to the resolver ranges



Aggressive Avg. Authoritative Queries
Negative Caching Negative Caching Per Query Name

DNSSEC NSEC NSEC3 NSEC NSEC3 NSEC NSEC3
Software / Vendor Version / Year Validation S I S I S I S I S I S I
BIND 9.17.22 (2022) – 9.18.35 (2025) 1 1 2 2

9.19.24 (2024) – 9.21.6 (2025) 1 1 2 2
Unbound 1.17.1 (2023) – 1.18.0 (2023) 2 1 3 3

1.19.3 (2024) – 1.22.0 (2024) 1 1 6 6
Knot Resolver 3.2.1 (2019) – 5.7.4 (2024) 1 1 4 2
PowerDNS 4.5.12 (2022) – 4.8.4 (2023) 1 1 2 2
Recursor 4.9.9 (2024) – 5.2.0 (2025) 1 1 2 2
Cloudflare March 24, 2025 1 1 6 6
Google March 24, 2025 1 1 3 3
Quad9 March 24, 2025 1 1 3 3

TABLE V: Results of empirical testing of DNS resolver implementations: no support; partial support; support.

from 2 to 6, for both NSEC3-S and NSEC3-I. In the case of
Knot Resolver (only), the average number of queries observed
differs between NSEC3-S and NSEC3-I, with 4 and 2 queries,
respectively.

Several behaviors were consistent across all resolver im-
plementations and public DNS services. All resolvers were
DNSSEC-validating. No implementation carried out aggres-
sive negative caching in either of the insecure zones, NSEC-I
and NSEC3-I. Finally, with the exception of Knot Resolver,
all performed regular negative caching as expected.

We note that the general lack of support for aggressive
negative caching in the presence of NSEC3 across public
DNS providers and open source implementations is consistent
with the findings in Section V, wherein the 3.5% aggressive
negative caching rate with NSEC3 is significantly lower than
the 49% rate found with NSEC.

VII. DISCUSSION

Based on our analysis of Internet resolvers using RIPE Atlas
probes, approximately half of deployed resolvers appear to
employ aggressive negative caching for NSEC. Additionally,
all of the open source implementations that we analyzed claim
to exhibit this behavior by default, with all but one actually
matching that claim. Thus, for the operator of a DNS zone
signed with NSEC, any query analysis should take into account
that the authoritative queries resulting in negative responses are
quite possibly just a subset of the recursive queries—not just
in terms of rate (a consequence of normal negative caching),
but also in terms of query names observed in authoritative
queries. The exact fraction of query names observed by a
given resolver is a function of three things: the pattern of
queries to the resolver, the negative cache TTL, and the zone
contents themselves. A resolver that is queried more frequently
for a diversity of nonexistent names in the zone is more likely
to exhibit aggressive negative caching behavior than one that
is queried less frequently for names in the zone or for a
less diverse set of query names. This is simply a matter of
probabilities; with more nonexistent query names to choose
from, there is a greater statistical likelihood that one nonex-
istent name falls into the coverage associated with the NSEC
records of another. A higher negative cache TTL for the zone is
more likely to result in higher instance of aggressive negative

caching; as long as NSEC records remain in cache, they are
possible matches for nonexistent query names. Finally, if the
names within a zone are somewhat evenly distributed, with
relatively small gaps in between, nonexistent names queried
are statistically less likely to fall into those gaps and thus be
inferred by aggressive negative caching; whereas, for a zone
with large gaps, the probability is higher. The measurement of
these variables—query frequency and diversity, negative cache
TTL, and zone name distribution—are not addressed in the
current study but are the subject of future work.

For zones signed with NSEC3, the factors contributing to the
amount of aggressive negative caching are the nearly the same,
but as shown in Section V, only about 3% of resolvers perform
aggressive negative caching with NSEC3. Thus, for operators
of zones using NSEC3, the set of nonexistent names in
recursive queries is more likely to be reflected in authoritative
query logs.

The extent to which authoritative server operators care about
the accuracy of their authoritative server logs, in terms of
queries for nonexistent names, might vary from operator to
operator. For example, the DITL dataset [3] is used by a
community of Internet researchers, and a more comprehensive
dataset results in more representative analysis. If the operator
of a zone signed with NSEC (or NSEC3 wishes to reduce
the effects of aggressive negative caching, there are some
factors under its control. It could arbitrarily increase the
names in the zone to create smaller nonexistence gaps or
decrease the negative cache TTL. Alternatively, it could deploy
a white lies [10] or black lies [11] approach, to effectively
eliminate aggressive negative caching altogether, albeit with
some additional deployment cost.

VIII. ETHICAL CONSIDERATIONS

With any measurement experiment, it is important to behave
responsibly and ethically, and to minimize any potential harm,
for which the perceived benefits outweigh the potential harms.
With this experiment, the primary ethical concern was the
burden on third-party infrastructure. In this case, that refers
to the RIPE Atlas infrastructure, the DNS resolvers with
which the associated probes are configured, and the public
DNS services. For the DNS queries performed on RIPE Atlas
(Section IV) our maximum send rate for probe resolvers was



only five DNS queries per minute, per probe-resolver pair.
Each probe would have seen a multiple of this rate, based on
the number of resolvers with which it was configured. A given
resolver might also see a multiple of this rate if it is used by
multiple probes. For the resolver implementation analysis in
Section VI, we issued queries in parallel, 20 or more seconds
apart, a small burden for a public DNS service. All these things
considered, we assess that the burden placed on both RIPE
Atlas and the involved resolvers to be negligible.

IX. CONCLUSION

In this paper we have studied the prevalence of aggressive
negative caching in DNS resolver implementations and de-
ployments. Such behavior is exhibited by roughly half of the
resolvers we analyzed with RIPE Atlas. Additionally, we have
found that different open-source DNS resolver implementa-
tions exhibit mostly unique behavior, with regard to aggressive
negative caching, traditional negative caching, and the number
of queries generated from the resolver in connection with a
negative response. We also observed that documented behavior
of these implementations differs from observed behavior in
almost every case.

While the study presented herein is somewhat limited in
terms of what can be generally applied, it provides a foun-
dation for future work to better understand this question and
area. We hope that this and future work will help understand
usage models, as well as the implications of deploying new
protocols in a security- and privacy-centered Internet.
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